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1. Introduction

This report reviews the results achieved during the two years

(77 Sept. 15 - 79 Sept. 14) of the research project 'Vib-rotational

energy transfer and relaxation patterns in nonequilibriUM chemical

systems', supported by the U.S. Air Force, via EOARD, as a low-cost

($ 4300 total) grant: AFOSR 77-3443 (modification No. AFOSR 77-3443A).

The report is divided into two parts: A) A survey of the objectives,

results and conclusions of studies performed in the framework of the

grant and published in the scientific literature. B) An appendix,

containing copies of the relevant publications.

Much of the work carried out under the present project was done

in collaboration with Professor R.D. Levine, in accordance with the

proposals submitted. Some of the joint studies are summarized in the

reprints of the articles included in Part B, (the appendix). Many other

topics, directly and indirectly related to the present research grants,

are discussed in a book entitled 'Lasers and Chemical Change', (Ref. 1),

scheduled to appear in 1980. A copy of the Table of Contents and the

preface of this book are also included in the appendix.

An interim scientific report covering the progress achieved

during the first eighteen months of the grants has been submitted in

March 1979. Consequently, there is a large degree of overlap between

this, final, report and the interim report.

I- -. .. .
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A. SURVEY

Contents: 1. Abstract

2. Background

3. Vibrational relaxation of diatomic molecules

4. Master equation for non-isothermal systems

S. Kinetic schemes, constraints and maximal work

in chemical lasers

6. The rate of reagent internal excitation in

chemical reactions.

7. Other topics

1. Abstract

The general purpose of the project was to provide new insights into

the kinetics and thermodynamics of chemical systems far from equilibrium.

The theoretical approaches adopted combine detailed kinetic analyses

based on master equation solutions and thermodynamic algorithms aiming

to reduce the intrinsic complexity of the detailed kinetics. The systems

and probleks addressed are of interest for chemical laser and laser

induced chemistry studies. In one work we have analyzed the kinetic and

thermodynamic aspects of V-V and V-T relaxation of HP molecules (Sec. 3).

Another study deals with the formal and physical implications of master

equations for non-isothermal relaxation, in particular the significance

of detailed balance and quasi-equilibrium distribution in some systems

(Sec. 4). The thermodynamic origin for the enhanced efficiency of chemical

lasers at rotational equilibrium is outlined in Sec. S. The very different

LU!
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effects of reagent internal excitation on the rates of endoergic reactions

taking place at a given total energy and a given temperature were presented

in an article summarized briefly in Sec. 6. Sec. 7 mentions some other

topics, directly and indirectly, related and supported by the present grant.
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2. Background

A prerequisite for selective chemical processes is the establishment

of non-equilibrium populations. For example, one of the rapidly developing

techniques for selecting a given chemical species from a chemical mixture

involves laser excitation of this species to some excited state from which

it can rapidly react with a given molecule to generate a product which

in turn can be easily separated from the mixture. Another example, laser

action requires very specific level populations, namely population inversion.

In chemical laserpopulation inversion is achieved by means of an exoergic

chemical reaction, e.,g.

F + H2 - HF(v,J) + H (1)

which produces vib-rotationally excited diatomic molecules, (HF).

The relaxation process which begins immediately upon the establishment

of nonequilibrium tends to carry the system back to equilibrium, thereby

competing with the selective mechanism (e.g. the lasing process).

Understanding the mechanisms and the time scales associated with relaxation

processes is thus crucial for assessing the possibilities of selective-

specific processes in chemical systems. This provides the major motivation

for the studies carried out in the framework of the present research project.

More specifically, we have been studying several aspects of vibrational

and rotational relaxation of small molecules in the gas phase,.,as well as the

effects of vib-rotational excitation on the rates of chemical reactions.

-The most common tool for describing relaxation processes are the

master equations governing the time evolution of the relaxing level

populations. To solve these equations for realistic systems, one usually

,n ~l•I I iIIII Ie l1I" . . .



-S-

needs a multitude of rate coefficients whose exact experimental values

are only rarely and partially available. In order to solve the master

equations for HF molecules we have used the information theoretic

synthesis method in order to determine the missing rate constants

(for a review, see [2]). The thermodynamic-information theoretic

approach has been applied not only to microscopic problems (analysis

and synthesis of rate constants for detailed processes), but also to

the macroscopic characterization of the relaxation process. The key

idea here is to identify the (usually very small) number of informative

macroscopic varaibles which govern the time evolution of the system.

Examples for such variables are the average number of vibrational quanta

and the average energy per molecule. The latter is the only informative

variable which survives after equilibrium has been achieved. The molecular

distribution functions are found by maximizing the entropy of the system

subject to the constraints implied by the momentary values of the

macroscopic observables.

The kinetic and thermodynamic points of view are intimately related

to each other, in all the. topics studied in the framework of the project..

The significance of these relations as well as their implications are

described briefly below and in more detail in the enclosed manuscripts

(part B).

!' .
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3. Vibrational relaxation of diatomic molecules

In this section we outline the background and the results of

ref. 3. We have chosen pure HF gas as a model system. The relaxation

processes taking place in this system are traditionally divided into

two classes: 1) V-V processes,

HF(n) + HF(m) 4 HF(n') + HF(m'), n' + ml = n+m (2)

These processes conserve the number of vibrational quanta

<n> - EP(n)n (3)

where P(n) is the vibrational distribution function, 2) V-T processes,

HF(n) + HF(m) Z- HF(n') + HF(m'), n' + m " n~m (4)

which do not conserve <n>.

The near resonant V-V processes are much faster than the V-T

processes in the low energy regime (small n,m). Due to the vibrational

anharmonicity the V-T processes are the dominant ones in the high

energy regime (1-4]. Due to the anharmonicity, the fait V-V processes

tend to establish a partly inverted (Treanor) quasi-equilibrium

vibrational distribution in the low n region, which persists over a

short time scale T << rVT. (The 'Treanor up-pumping' process is

an important pumping mechanism in electrical and chemical CO lasers).

At later times, t ', TVr the V-T processes take over and restore the

system to equilibrium.

I
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In order to examine the above notions in a quantitative fashion

we have first solved the vibrational master equation, using a

comprehensive set of over 300 rate coefficients [1-4]. We have then

employed the maximal entropy procedure in order to identify the

thermodynamic constraints describing the relaxing populations. The

two major concrete findings were: a. In most cases two constraints,

the average number of quanta, <n,, and the average vibrational energy

<En' = 3 PnEn suffice to characterize the relaxation. b. During the

first, V-V dominated stage, the vibrational populations can be

described as a superposition of the initial and a quasi-equilibrium

vibrational distribution (common to all conditions or, equivalently,

independent of the initial distribution). Another, more general result

provided in ref. 3 is a proof of the existence of a generalized

thermodynamic potential characterizing the relaxation - -independently

of the molecularity of the collision microscopic mechanism which

causes the relaxation.

-73
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4. Master equations for non-isothermal systems

This study has been summarized in a short note, ref. S.. The

motivation for this work has been in a misleading procedure (in

our opinion) suggested in ref. 4, to determine the stationary solutions

of the master equation The suggestion is to substitute a postulated

solution into the equation and check the consistency. We argue that

this procedure can be harmful since the stationary solutions have to

satisfy not only the master equation itself, but also the appropriate

boundary conditions. In non-isothermal systems these conditions are

not trivial and must be carefully formulated. As a result of these

notions, we have proposed a general, consistent, algorithm which

removes the possibility of misconceptions and misidentifications of

the stationary solutions. The key idea is to start with the full

master equations for all the time dependent degrees of freedom in

the system. Then, the true stationary solutions are found by detailed

balance relations involving the maximal entropy distributions for all

degrees of freedom. Reduction of the master equation by separating

the relaxation processes into different time scales can then be

applied without violating the boundary conditions and without altering

the physical significance of quasi-equilibrium distributions and

momentary detailed balance relations.

.1
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5. Kinetic schemes, constraints and maximal -,-ork in chemical lasers

It is known experimentally that the efficiency of chemical lasers

is significantly increased by adding a buffer gas to the lasing mixture.

The gas moderates temperature rise and ensures fast rotational relaxation.

The latter phenomena enables more efficient extraction of laser radiation

from partially inverted vibrational populations. Kinetic considerations

can be used to set upper bounds to the efficiency of the laser in the

limits of fast and slow rotational relaxation [6]. In ref. 7 we have

provided complementary thermodynamic interpretations. To this end

we have proved several general results concerning the maximal work that

can be extracted from a nonequilibrium chemical system. In particular,

it was shown that the lower is the number of constraints on the molecular

distribution function the higher is the efficiency of converting internal

energy into thermodynamic work. We have applied this result to chemical

lasers in which the thermodynamic work appears as coherent laser

radiation[l,6].It was shown explicitly that in the limit of weak

rotational coupling (slow rotational relaxation) the molecular

distribution function is subjected to many constraints. These are

removed in the strong coupling limit. This explains the higher efficiency

at rotational equilibrium.

K
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6. The role of reagent internal excitation in chemical reactions

Internal excitation of translationally thermal reagents leads

usually to dramatic enhacements of the rates of endoergic reactions.

This is primarily a thermodynamic Cstatistical)effect since internal

excitation reduces the endoergicity of the reaction. On the other hand,

the effect of raising the internal energy at a given total collision

energy (implying a reduction in the translational energy) is purely

dynamical. In fact, internal excitation under such conditions does not

necessarily lead to enhancement of the rate, and only when the reversed

(exothermic) reaction results with population inversion- enhancement by

one or two orders of magnitude are expected. The different roles of

reagent internal excitation at given energy and given temperature are

of theoretical as well as practical importance and must be taken into

account in analyzing experimental data. The origin and significance

of these differences are discussed in ref. 8.

I
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7. Other topics

The book cited as ref. 1 includes various topics directly and

indirectly related to the present research projects which have not,

or only partly, been published elsewhere. We (R.D. Levine and

A. Ben-Shaul) acknowledge our AFOSR grants which helped understanding,

clarifying and presenting these issues. It will be impossible as well

as redundant to outline the relevant problems in this report and

it should therefore be sufficient to just name a few, viz.:

Rotational relaxation of diatomic molecules; the connection between

vibrational and rotational relaxation of diatamic molecules; kinetic

and thermodynamic aspects of the relaxation characteristics of laser

excited polyatomic molecules.

- !-
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Abstract

The efficiency of molecular lasers is known to be enhanced when certain relaxation
processes (which dissipate some energy) are allowed to take place. We consider a
thermodynamic interpretation of such observations with special applications to
chemical lasers operating in the limits of slow and fast rotational relaxation.
Specifically it is shown that kinetic coupling schemes which reflect the hierarchy
of rate processes in a nonequilibrium molecular system can be expressed as thermo-
dynamic constraints on the internal state distribution function. The lower the number
of constraints the higher is the work which can be extracted from the nonequiibrium
populations. The lower laser efficiency in the absence of rotational relaxation is due
to the existence of an isolating constraint on the vib-rotational populations of the
lasing molecules.

Introduction

Experiments [ 1, 2] and numerical simulations [3] show that the efficiency of a
chemical laser is significantly enhanced in the presence of a buffer gas. A kinetic
interpretation [41 (the 'funnel effect' [ 11, see below) invoking a competition between
stimulated emission and the (pressure dependent) rotational relaxation is available.
The purpose of this paper is to offer a corresponding thermodynamic interpretation.
The discussion illustrates the general approach to systems in molecular disequilibrium
[5, 6] which is based on the maximal entropy formalism [7]. The increase of the
laser efficiency with the buffer gas pressure is shown to reflect the additional work
which is available from a system when a constraint is removed.

The constraints which are introduced in the discussion of thermodynamic work
- processes [8-10] are typically macroscopic (e. g. pistons, catalysts). A novel feature

. of the present discussion is that work is obtained by the removal of a molecular (i. e.
a kinetic or mechanistic) constraint. Specifically, the constraints to be discussed are
conditions on the distribution of the molecules over their internal energy levels.

0340-0204/79/0363-0376S02.00
0 Copyright by Walter de Gruyter & Co. • Berlin . New York
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364 A. Ben-Shaul, R. D. Levine

In a laser system the work is extracted as light which due to its spectral characteristics
(well collimated beam over a very narrow frequency range) can be regarded as
thermodynamic work [1 1.

Section I is a discussion of the work available upon (partial) removal of the con-
straints on the system. The maximal entropy formalism enables us to introduce
the molecular constraints in a simple fashion and to demonstrate their role not only
analytically but also in a graphic fashion. A particular feature of the discussion is
that it is not limited to systems coupled to a heat bath [ 121. The particular constraints
which are removed due to the presence of a buffer gas are formulated in section 2,
which applies the point of view of section 1 to the physical system of interest.

On the microscopic level we are concerned with the following physical picture. A
fast chemical reaction creates a disequilibrium population of molecules in their
vibrational and rotational states. In the low pressure regime lasing is possible on
any allowed' molecular line for which there is an excess population in the upper
state. Laser emission depletes the upper state and hence terminates when the popula-
tions in the upper and lower state become equal (or, in practice, when the excess in
the upper state falls below the threshold density required by losses etc [2, 41).
Collisional processes (whose rate is proportional to the pressure) are too slow as
compared to the rate of laser emission in order to drain the upper state or to feed
the lower state. The entire system acts as a collection of independent two-level
systems. For each molecular laser line the sum of the populations in the upper and
lower states is constant (on the time scale of interest).

As the pressure is increased, collisional relaxation begins to take place. The critical
observation here is that rotational energy transfer is several orders of magnitude
more effecient than vibrational energy transfer [1, 131. Hence rotational relaxation
can but vibrational relaxation typically cannot compete with the (unimolecular)
lasing process [ 1]. In the limit where rotational energy transfer is quite efficient any
depletion of an upper state due to lasing2 is immediately restored by the collisioral
process and any excess of the lower state is immediately removed. The net result of
this "cooperative" lasing mechanism is an efficient draining of the population of the
upper vibrational state into the lower one.

The low pressure constraint that on any lasing line the total population (sum of
upper and lower states) must be constant is thus removed in the higher pressure
regime.

In the limit of strong rotational coupling the rotational distribution is thermalised
throughout the lasing. Thus,

P(v, J) = P(v) (2J + 1) exp(-- PBJ(J + ])]/Qrot(0)• (.)

. Dipole selection rules limit the allowed transitions. In lasers using diatomic molecules the
important transitions occur on the P-branch lines connecting the vibrotational levels, (v, J - 1)

2 to (v - 1, J). Here v and J are the vibrational and the angular quantum number respectively.
It is important to note that lasing occurs on the strongest ('Highest gain' [ 1, 21 ) line. During
the lasing process, this line gradually shifts towards higher 's, see below.

J. Non-Equilib. Thermodyn., Vol. 4, 1979, No. 6
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Molecular constraints in chemical lasers 365

where T = (Rp)- ' is equal to the translational temperature. For simplicity we have
used here the rigid rotor level scheme and B is the rotational constant. The necessary
lasing condition, i. e. population inversion,3

P(v, J- 1)/(2J- l)> P(v- l, J)/(2J + 1), (2)

now reads

J > (20B) Qn[P(v - l)/P(v)] (3)

Lasing starts on the line with the highest inversion (more precisely highest gain)
corresponding to the initial population P(v). Generally this is one of the low lying

's. The fast rotational relaxation transfers molecules into v, J - I and from v - 1, J
while preserving the Boltzmann shape of the rotational distributions and preventing
"hole burning". The upper vibrational population is thus homogeneously drained
(funnelled 11]) into the lower one through the highest gain transition. As P(v - 1 )/P(v)
increases in this process the lasing is gradually shifted to higher J's as implied by
(3). Since J is unlimited, lasing can still go on even when P(v - 1 )/P(v) ( 1. In
practice, lasing terminates at some high J determined by the requirement for threshold
inversion [2, 41. Yet the draining of the upper level due to the cooperation (strong
coupling) between the rotational levels is very efficient.

In the low pressure region collisional relaxation is negligible and the population
P(v, J) is affected only by the stimulated emission. Thus, molecules can be exchanged
only between (v, J - 1) and (v - 1, J) and the different lines form distinct groups.
Here the lasing terminates when every line reaches, individually, an equality in (2)
so that lasing terminates when P(v)/P(v - 1) - 1; as opposed to the strong coupling
case. The passage to the strong coupling limit is formally achieved by removing the
constraints on population exchange between the different rotational states of the
same vibrational manifold.

1. Work

Discussion of work processes for systems in disequilibrium is conveniently formulated
using the maximal entropy formalism [5, 6, 12]. Our first purpose is to relate this
point of view to the "energy picture" [81, which is more common in equilibrium
thermodynamics. In doing so we shall also introduce our notation and invoke the
distinction between the allowed and excluded regions in the mean or internal
energy E-entropy S plane which is fundamental to our subsequent discussion.

Our primary concern is with systems in internal molecular disequilibrium where
upon spontaneous removal of the constraints the relaxation towards equilibrium
is predominately collisional. We shall thus assume that the system is spatially homo-
genous, dilute and that the time scale of interest is sufficiently coarse that collisions

3 P(v, I - 1) is the population in the 2(1 - 1) + I = 21 - I fold degenerate (v, J - 1) vibrotational
level. The population per quantum state is P(v, J - 1)/(2J - 1). Population inversion requires
inversion between quantum states, (21.

J. Non-Equilib. Thermodyn., Vol. 4, 1979, No. 6
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366 A. Ben-ShauL/ R. D. Levine

are instantaneous. A complete microscopic characterisation of the system is then
provided by the number of molecules in each of the different internal energy states.
One can thus consider a distribution function P(n. t) specifying the fraction of all
molecules in the internal energy level n (of degeneracy g,) at the time t.

A macroscopic characterisation of the state of the system is provided by specifying
the value of m "constraints"

(Ad) = 1 Ar(n) P(n, t), r1. m, (4)
n

which together with the normalisation

1 = (A) = M P(n, t) , (5)

suffice to determine P(n, t). In (4), Ar(n) is the magnitude of the property A, in the
n'th level. Unless n is comparable to the number of levels which are significantly
populated, the m + 1 constraints, (4) and (5) do not suffice, in themselves, to
specify a unique distribution function P(n, t). It is here that one invokes the principle
of maximum entropy [61 by selecting P(n. t) as that distribution which satisfies the
m + 1 constraints and whose entropy4

S[n] = - R Ir P(n, t) £nfP(n, t)/g, (6)
n

is maximal. Provided that the (m + 1) constraints are linearly independent and that
their values are consistent (i. e. there is at least one distribution which satisfies (4)
and (5)) the maximum problem has a unique solution [14]. Another important feature
of the solution is that the addition of constraints can never cause the entropy to
increase. Intuitively this isobvious. Adding constraints can only further restrict the
range of contending distributions and hence the entopy will at most not change s

and otherwise will decline. Finally, one notes that the entropy is a convex function
of the constraints [141, i. e. for any P(n, t) that satisfies the m + 1 constraint condi-
tions we have

a2 S[n]/ (A,) 2 <0, (7)

where the inequality is strict when the constraints are linearly independent.

The three properties of the maximum entropy procedure are summarised graphically
in the top row of Figure 1 where E is the mean energy (per mole) of the system

E = I EP(n. t). (8)

4 Equation (6) is the entropy for one mole. Since, by assumption, the gas is dilute and the
collisions are uncorrelated, the single molecule distribution function sufficies to describe the
system. However, the system consists of N molecules rather than of a single one.
This happens when the additional constraint is "non-informative" [6, 151, i. e. when it does not
help to specify the macroscopic state.

J. Non-Equilib. Thermodyn., Vol. 4, 1979. No. 6



Molecular constraints in chemical lasers 367

Given the value of E, there is a unique maximal value of S shown as the solid line.
Moreover, the solid line is convex (cp. (7)). Finally, if additional constraints are
present then, for a given value of E, the value of S can only go down. In the S-E
plane, the solid line is the boundary between the allowed and excluded states of the
system. A given (S, E) point can only be on or below the solid line. It is not
possible to find a macroscopic state which is subject to the constraints whose
entropy exceeds the boundary line. The physical significance of this boundary is
made clear by equilibrium thermodynamics. The normalised distribution of
maximal entropy subject only to a given value of the energy is, of course, the
equilibrium (canonical') thermal distribution. The slope of the S-E curve is then
a measure of the temperature 6

aS/aE = I/T = RO, (9)

and the condition that the distribution be normalised determines the partition
function

Q = Z g. exp(- E.). (10)
n

The sum over levels in (10) may converge even if 0 is negative (e. g. if there are only
a finite number of levels), in which case the S-E curve can have a maximum (upper
left case in Fig. 1). If the sum (10) converges only for positive j (e. g. if the spectrum
is unbounded from above) then the S-E curve is monotonic (upper right case in
Fig. 1).

S S

E E

s s

S

Fig. 1: Maximal entropy curves in the entropy S (upper row) and mean or internal energy E
(bottom row) representations for systems with bounded (left column) and unbounded
(right column) spectrum. In the S representation every E, S point on the solid curve is
obtained by maximizing S subject to the value of E while in the E representation every
E. S point on the curve corresponds to the extremal E for a given S (where for the negative
temperature region, R = aS/aE < 0, of systems with bounded spectrum, the extremum is
a maximum). The allowed region of nonequilibrium E, S points lies on the concave side of
the solid curves.

6 We use the term temperature in a generalized sense as the (inverse) magnitude of the Lagrange
parameter (cp. (11)) conjugate to the energy. The letter k denotes Boltzmann's constant.

J. Non-Equilib. Thermodyn., Vol. 4, 1979, No. 6



368 A. Ben-Shaul, R. D. Levine

An alternative macroscopic description and one that is well suited towards the
discussion of work processes in an isolated system regards the energy E as a function
of the entropy S and other macroscopic variables. This is sometimes known as "the
energy picture" [8]. We now show that the tranformation from the entropy to the
energy picture is not limited to systems in thermal equilibrium but can be carried
out in general.

Assume the energy to be taken as the first (i. e. r = 1) constraint. The problem of
seeking an extremum of the entropy subject to m + I constraints can be formulated
as seeking the unconstrained extremum of the Lagrangian

,=S[n -('Xo- 1) (1) - ROE -  : X, (A,) . (
r=2

Here the m + I coefficients (NO0 , X,; r = 2,. m) are parameters whose values
are to be determined by the condition that at the extremum the distribution is
consistent with the values of the constraints. One can show that the procedure leads
not only to an extremum but indeed to a maximum for the entropy [6, 141. Say
now that L is divided by RO. The result (cp. ( 11 )) is just a Lagrangian for seeking
an extremum of the energy subject to the given value of the entropy and the other
m constraints (normalisation and (A,), r = 2 .. , m). This is the characterisation
of the macroscopic state in the energy picture. The only difference is that the
extremum is not necessarily a minimum. It will be a minimum if (as is typically the
case for macroscopic systems) 0 > 0. It is a maximum if 3 < 0.
The formal equivalence between the entropy and the energy pictures is also shown
in Fig. I. The E-S plots in the bottom row are obtained by simple rotation from
those in the top row. As in the entropy picture. the line is the boundary between
the allowed and excluded macroscopic states. When 0 > 0. the equilibrium E-S line
is concave.

Work processes in an isolated system are shown schematically in Figure 2. As in
Figure 1 the solid E-S curve corresponds to the situation w~tere no other constraints
(apart from normalisation) are present. If additional constraints do apply. the
system is characterised by some point (e. g. E2 , Si) within the allowed region. If now
some of these additional constraints are removed, part of the energy of the macro-
scopic state can be extracted as work. If the entropy is unchanged, then say E,. Si
is a possible final macroscopic state. Removing additional constraints (at constant
entropy) enables the energy to drop even further untill, when all constraints are
removed, it reaches Ef. For the given value of Si. Ei - Ef is the maximal work that
can be extracted from the system. If the entropy does increase, less work is
available.

By regarding every allowed macroscopic state of the system as a state of maximal
entropy subject to constraints one obtains a statistical mechanical description of
work processes also for systems not in thermal equilibrium. (The corresponding
thermodynamic description is well known [9, 10. 161). Within such a formulation.
equilibrium is the state where the constraints are the (additive) time-independent
constants of the motion. There are however time-dependent constants of the
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E EA/ S/ /

Ei ----------- ,,, /
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SI| S
so St S

Fig. 2: Work processes in an isolated system of molecules with bounded (left) and unbounded
(right) spectrum. The solid lines represent the equilibrium mean or internal energy
E-entropy S locus. The broken lines are maximal entropy curves in the presence of
additional constraints: the larger the number of constraints the lower is the value of S for
a given E. Removal of constraints enables the system to convert part of its energy into
work. In the regions of positive temperature, aS/aE > 0, the maximal work, e. g. Ei - Ej is
obtained in an isentropic process, S = Sj. Less work is available in an irreversible process
SJ > Si.

motion.7 By maximizing the entropy subject to such constraints one obtains exact
solutions of the Liouville equation which describe non-equilibrium situations. An
explicit construction principle for such observables has been described, 17 1.

The graphical considerations of Fig. 2 can be cast in quantitative terms by recognizing
that every point in the allowed region is determined as the solution of an extremum
problem. Assume we vary the energy but keep all the other (A,)'s constant. For each
energy we determine the maximal entropy. The locus of E-S pairs determined in this
fashion is shown as a broken line in Fig. 2. (The solid line is. of course, a particular
example of a broken line.) Now, let one or more constraints be dropped and the
procedure repeated. This generates another broken line which is everywhere exterior
to the previous broken line, (imagine Fig. 2 in the entropy picture). The solid line is
exterior to all the broken lines.

Let Pj(n) be the distribution of maximal entropy subject to the value Ei of the
energy and to additional constraints. The distribution Pj(n) (cp. Fig. 2) differs from
Pi(n) in that its energy is lower and some among the 5onstraints on Pi(n) are no
longer operative for Pj(n). However, by construction. all of the constraints on P1i(n)
are also valid for Pi(n). In other words in going from i to j we have only removed s

(but have not added) constraints.

As a distribution of maximal entropy Pj(n) is necessarily of the functional form
m

Pi(n) = g, exp[- E(n)/RTJ - X 4,. Ar(n)]/Q j . (12)
r=2

- These are observables which depend explicitly on time but whose average values are time-inde-
pendent.

8 It is important to note that the quantitative argument (eq. (13)) below requires that those
constraints which remain do not cha.ige their value.
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where only the constraints on the state j are present explicitly in the exponent in
(12). Consider now the following transformations of the entropy deficiency [6, 12],
DS[Pj lPj J, where (12) is used in the final stage'

DS[PiIPjj = R Z Pi(n) Qn[Pi(n)/Pi(n)]
n

= R Z P(n) QnfPi(n)/g, I
ft

- R 2; Pi(n.) Qn[Pj(n)/gn]
n

- R Z [Pi(n) - Pj(n)] In[Pj(n)(gn1

=Sjfn Si(n

+ R 1; [Pi(n) - Pj(n)] [Pi E(n) + 2 ': A,(n) - £nQj]
n r

Sj[n] - Si[n] - RPj Z E(n) [Pj(n) - Pi(n)]
n

=AS -- AE/Ti (13)

Only those constraints on Pi(n) whose values for P,(n) and P,(n) are different appear
in the final answer. Of course, this result follows from our initial stipulation that
apart from the energy and the entropy, all other constraints on Pi(n) are equally
valid for P(n). If, in addition Si[n] = S,(nj, we get

DS(P1Pij =-AE/Ti . (14)

Since - AE is the maximal work available (Fig. 2) it follows that TiDS[PiIPj] is the
maximal work even if the system is isolated and not coupled to a heat bath. More-
over, for the conditions in Fig. 2 we have

Ej - Ef = (Ei - Ej) + (Ej - Ef)

= T f DS[PilPrI

= Ti DS[PilPi I + Tr DS(Pi1PfI. (15)

2. Lasing

In this section we explicitly introduce the constraints which are removed by
collisional relaxation and consider the additional work made available by their

removal. To simplify the algebra we shall assume that lasing occurs only on P-branch

9 Since DS > 0, [6, 121, it follows that for a positive T, the maximal work is obtained when
AS= 0.
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Fig. 3: Stages in the time evolution of the rib-rotational distribution function during the lasing
process in the limits of slow (upper panned) and fast (lower panned) rotational relaxation.
(I ... just after threshold, 11 .. ,. during lasing, III,... at the end of the pulse). In the limit
of fast rotational relaxation the lasing line is an isolated subsystem; lasing occurs independ-
ently on each line and terminates upon equalization of the upper and lower populations.
In the limit of fast rotational relaxation lasing occurs only on the highest gain line. The
effective rotational energy transfer enables the system to lase on high J-lines thereby
allowing a very efficient draining of the upper vibrational manifold and consequently high
laser efficiency.

lines and that only two vibrational manifolds take part, as is shown in Fig. 3. (This
is the case for example in the Cl + HBr - Br + HCl chemical laser [31). Under such
conditions one can easily establish a unique correspondence between the internal
energy labels (v and J) of diatomic molecules and the possible lines in the P-branch
(v, J - I - v - 1, J). Since the lasing is between only two vibrational manifolds,
specifying the final rotational state J uniquely assigns the line. Specifying the
vibrational quantum number v uniquely assigns the upper or lower state of the
transition. Thus, while one often resolves the internal state distribution P(v, J) as

P(v, J) = P(J IV) P(V) , (16)

i. e. a distribution of J states within a given vibrational manifold times the vibrational
distribution, here we prefer the equivalent but complementary resolution

PKu, K) = P(u IK) P(K). (17)

In ( 17) we use the same convention as in Fig. 3,

P(K) = K~u, K - 1) + P(u - 1, K) ( 18)

and

P(v, K - I) /P(K) u = v
P(u IKI = (19)

P(v - 1, K)/P(K) u = v - 1.
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P(K) is thus the sum of the population in both the upper and lower states of the
given P-branch line and hence is the quantity that is constrained in the low pressure

limit. P(K) can clearly (cp. (18)) be expressed as an average over the internal state

distribution

P(K) = (AK) = Z Z AK(V, J) P(v, J) , (20)
v J

AK(v.J) =6(v-u) (J-K- 1)

+ 5(v - I--u) (J -K). (21)

The low pressure constraint is thus that the magnitude (AK). K 1. 2. is specified

to be equal to that value of P(K) which is characteristic of the nascent i. e. strictly

unrelaxed) products of the chemical reaction.

In Section 1 we have argued that removal of a constraint enables the system to

perform work. The proof was based on the unique (and maximum) solution of the

extremum entropy problem. Here one can identify explicitly the origin of the increase

in the entropy due to the removal of the constraint. The reason is that the expression
of the constraints (AK) in the form (20) enables us to state that in the low pressure

regime (and over the time interval of interest) the distribution P(K) is unchanging.

Corresponding to the resolution (17) one has a similar form for the degeneracy

g(u, K) g(v, J) = 2J + I

=g(uIK) g(K), (22)

where g(K) = [2(J- 1) - 11 + [2J + I 4J, so that

(2J- l)/4J u=v
g(uIK) =

(2J+ l)/4J u=v-. (23)

The entropy of the internal state distribution P(v. J) can thus be written as

S[v.J =- R Z P(v, J) Qn[P(v. 1)/(2J + 1)]
V, J

= - R 1 P(u, K) Qn[P(u. K)/g(u. K)]
K, u

R Z P(K) vn[P(K),g(K)]
K

-R Z P(K) I P(uiK) n[P(uK)gluIK)J
K u

= S[KJ + S[uiKJ = S[u. K). (24)

The first term in (24) is not allowed to vary in the low pressure regime. The proce-
dure of seeking the distribution P(v, J) for which Sv. J] is maximal (subject to
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energy and other, if any, constraints) is equivalent to seeking the distribution P(u, K)
for which S[u, K] is maximal (subject to the same constraints). In the low pressure
regime P(K) const. is a constraint, for all K's. As the pressure is increased, this
constraint is removed (by collision induced population transfer). For a given E, the
maximal value of S may be higher in the higher pressure regime since both P(uIK)
and P(K) are allowed to vary. Conversely, for a given S, the minimal value of E
will be lower (cp. Fig. 2) and more work is available.

Additional insight into the role of rotational energy transfer is provided by regarding
the entire (isolated) system as a sum of two parts: the internal degrees of freedom
of the lasing molecules and a heat bath provided by the translational motion.
Coupling between the two is provided by binary collisions and hence is absent in the
low pressure regime. In the limit of effective rotational relaxation the coupling is
strong enough to ensure that at all times the rotational states are in thermal equi-
librium at the temperature of the heat bath [18].

The coupling of the lasing system and heat bath implies that the entropy of the
lasing system may decrease during lasing provided that there is a corresponding
increase in the entropy of the bath [11, 19], Fig. 4. As is evident from the figure,
the more the entropy of the lasing system can decrease the more work is available.
A quantitative entropy balance for a chemical laser in the strong rotational coupling
regime can be obtained as follows [19]: The rotational state population is main-
tained unchanged by the collision. The only change is thus in the vibrational state
population P(v). Now in a v -- v - 1 transition the relations hold:

6E = hcw6P, (25)

6S = - Rkn[P(v)/P(v - 1)1 SP. (26)

Here 6P is the decrease in P(v) (and the increase in P(v - 1)) and W is the vibration
frequency. Consider now the P-branch transition v, J - I -- v - 1, J. The laser light

E Losing system E Bath

_7----
_hi gh r-"" ~ ~ ~ .9 Tf% 

' .T ..__ -- S
Jk low T Yb

Ic - -- & S

Fig. 4: Changes in the energy and entropy of the lasing system and the heat bath during lasing
in the limit of strong rotational coupling. The entropy decrease of the system associated
with lasing under partial vibrational inversion, (P(v)/P(v - 1) < 1 ), e. g. 6S in the transition
i -j, is compensated for by a corresponding entropy increase of the bath

6Sb = 8Q/T > - 5S. The difference 8W - 6E - 6Q appears as laser radiation.
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has a frequency hvL = hw - 2 BJ. The balance of the energy (6E - hPL) appears
as heat in the bath. For this we have

6Sb = (2BJ/T) 6P (27)

-. I where T is the temperature of the heat bath (Fig. 4). The condition

5S + 5Sb > 0

or

2BJ/T + R~n[P(v)/P(v - 1)1 , 0 (28)

is the familiar condition for chemical lasing [ 191, cp. (3).
Two additional insights are provided by (28). First note that even for P(v)/P(v - I)
quite below unity, lasing is still possible for a sufficiently high J. This is the reason
for the gradual shift of the lasing line towards higher J's [ 1-3 ]. (Ultimately, lasing
terminates due to the absolute concentrations falling below the loss level [4 1.) Second,
the loss of chemical energy as heat is 2 BJ. As the heat bath temperature increases,
lasing occurs at a higher J (cp. (28)) and hence less energy is extracted as laser light.
The efficiency improves upon cooling of the laser [1, 2].

3. Concluding remarks

The maximal work which can be obtained from a nonequilibrium molecular system
has been discussed in terms of the number and character of the constraints on the
molecular level populations. The constraints reflect the relative time scales of the
relaxation and work producing processes governing the time evolution of the system.
In chemical lasers based on vib-rotational transitions the major factor influencing
the amount cf work (laser light) which can be extracted from the system is the ratio
between the rates of rotational relaxation and stimulated emission. When this ratio
is large a constraint on the molecular distribution function is removed and the laser
operates more efficiently.

It is important to note that all the considerations of this paper refer to the maximal
and not the actual work obtained from nonequilibrium systems. The latter depends
not only on the constraints but also on the rates of the loss processes which compete
with the work producing mechanism. Thus, in chemical lasers vibrational relaxation
and cavity losses compete with the stimulated emission and lead to irreversible
entropy and heat production. However, time-dependent kinetic and thermodynamic
analyses [20, 2 11 indicate that the major factors influencing the laser efficiency are
the constraints implied by the kinetic scheme. Finally, it should be noted that the
classification of rate processes as useful (e. g. rotational relaxation) and useless or
dissipative (e. g. vibrational relaxation) depends on the form of thermodynamic work
generated by the system. For example, while rotational relaxation enhances the
stimulated emission in lasers operating on vihrational transitions it is, clearly, a
process which should be avoided in lasers operating on pure rotational transitions.
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The thermodynamic and kinetic characteristics of vibrational relaxation of
diatomic molecules are studied using HF gas as a model system. The
non-linear master equation governing the relaxation is solved numerically
using a comprehensive set of exponential gap rate constants. The results
indicate a two-stage relaxation mechanism. A very fast V-V dominated
stage leading to an intermediate quasi-equilibrium distribution which
depends only on the initial mean number of vibrational quanta. During this
stage the vibrational distribution can be described as a superposition of the
initial and intermediate distributions. A second, very slow, V-T dominated
stage ultimately brings the system to complete equilibrium with the heat
bath. The relaxation is characterized microscopically by the time evolution
of the vibrational distribution and macroscopically by the evolution of the
moments. The bridge between the two levels of analysis is provided by the
maximal entropy procedure. It is shown that the entropy deficiency is the
only convex function which decays monotonically to equilibrium irrespective
of the order of the relaxation mechanism. Using the maximal entropy form
of the distribution it is shown that two moments, i.e. two macroscopic ob-
servables, suffice to describe the distribution during the first stage while only
a single moment is required to describe the final approach to equilibrium.
During the intermediate stage more than two momenta may be required.

1. INTRODUCTION

A relaxation process is characterized at the microscopic level by the time
evolution of the population distribution. For a fairly wide class of problems
this evolution is governed by linear master equations and in a number of special
cases, e.g. harmonic oscillators coupled to a heat bath, it is even possible to obtain
closed analytical solutions (1]. More generally though, exact solutions are not
possible and one must resort to approximate schemes or numerical methods.

Recently the information theoretic characterization of (Markovian) relaxation
processes has been discussed [2] and its use as a practical means of analysing
such processes (when governed by a linear master equation) has been de-
monstrated [3]. The central idea is to use macroscopic properties of the system,
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i.e. bulk averages, provided they correspond to independent ('informative')
observables, as constraints in a maximal entropy procedure to determine the
relaxing population distribution. There are good reasons to justify the use
of this procedure. For example, of the many convex functions that decay
monotonically with the approach to equilibrium, and hence could be used to
characterize the relaxation process, it is only the ' entropy deficiency ' (its rate
of decay is called the rate of entropy production) that satisfies essential ' addi-
tivity' or ' grouping' conditions [4, 5]. Further, it may be shown that, of all
possible distributions consistent with the observed data, the maximal entropy
distribution gives a lower bound for this rate [2]. Throughout this paper the
term entropy refers exclusively to the information theoretic entropy (see [2-4)).

There are many processes, however, that are governed not by linear master
equations but by non-linear master equations. These non-linear processes are
of particular significance, for example, in molecular lasers. Here, fast vibra-
tional-vibrational (V-V) transfer processes can, due to anharmonicity, cause
rapid pumping up to inverted quasi-equilibrium distributions before the slower
vibrational-translational (V-T) processes take over [6, 7]. Unfortunately,
non-linear master equations are considerably less amenable to analytic investiga-
tion than their linear counterparts and can normally only be solved by approxi-
mation or numerical techniques. Obviously, then, alternative methods need to
be investigated and, in view of its success for linear processes, the maximal
entropy procedure is a likely candidate. Once again it is important to de-
monstrate the validity of such a procedure. In the next section we show that
for non-linear master equations (unlike linear ones) the only convex function
that has a definite rate of decay is the entropy deficiency. This result de-
monstrates that the entropy is a suitable, if not the only quantity with which to
characterize the relaxation process. (Since the definite rate of entropy produc-
tion can be interpreted as the generalized second law of thermodynamics, it
seems eminently suitable to characterize the process with a quantity that satisfies
this condition!)

In § 3 we give a detailed examination, with numerical examples, of the relaxa-
tion of a (dilute) gas of HF molecules. First we solve the relevant (non-linear)
master equation numerically using a comprehensive set of exponential-gap
[8, 9] state-to-state rate constants. These results illustrate general features of
the process, e.g. effect of initial distribution, fast pumping to a quasi-equilibrium
distribution and subsequent relaxation etc., as well as the time dependence of
the moments (bulk observables). In § 4 we then go on to show how entropy
provides a convenient characterization of the process and that the maximal en-
tropy distribution, determined with only a small number of constraints, accu-
rately reproduces (albeit phenomenologically at this stage) the evolving popula-
tion distribution.

2. ENTROPY AND MACROSCOPIC DISEQUILIBRIUM

A linear master equation [1]

- . dP(n, t)Idt= , A(n, m)P(m, t)

specifies the time evolution of the population P(n, t) in state n at time t. For

1 I l i II I. . .. . _ -.. . . . .
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convenience in later manipulations we rewrite it as a discrete equation over a
short time interval At,

P(n, t+At)= 2 fJ(nlm)P(m, t). (2.1)
M

The l(n In) give the probability that a system in state m will be found after At
in state n. For At sufficiently small [1] -l(njm) =n.m+A(n, m)At and, in
order to conserve probability

Sn(n1m)= . (2.2)

The stationary distribution P°(n) is unchanged by the passage of time, i.e.

PA(n)= 1 fl(njm)PO(m). (2.3)

There are many functions of the form

rP(nt) 1 (2.)
LP'*(n)]

which, for distributions governed by a linear master equation, satisfy - dEldt > 0
provided only that the function = (x) is convex (i.e. a2 #/ax2 > 0). This
result is obtained in the form of the inequality [10]

vpo(4)P (2.t)
PI, NX PO(n) P( [ P(n+ ) (2.5)

by using the property that the mean of a convex function is greater than or equal
to the function of the mean, i.e.

<O(x)%,'1 > 0(<x%"1), (2.6)

where the averaging is over any set of (normalized) probabilities. If the convex
function is taken to be the entropy, i.e. O(x) =x In x, then (2.4) defines the
entropy deficiency

AS= P "(,n) In ( P(n, t) In (2.7)
PO(n) PO(n) On

and its rate of change, the rate of entropy production, has a definite sign
-dAS/dt > O. However, purely from this point of view, as mentioned in theintroduction, there is nothing to distinguish our choice of the entropy as a means

of characterizing the approach to equilibrium, from any other convex function.
It is distinguished, though, by its additivity properties which, as we shall see,
are of particular significance when we examine the evolution of functions of the
form (2.4) for processes governed by non-linear master equations.

We write the stochastic equation for non-linear processes in the form

P(r, t+At)= 1: II(rsjmn)P(m, t)P(n, t), (2.8)

where the transition probabilities satisfy the conservation condition

Y, rs Imn)= 1. (2.9)

N.P. 1xK

III I I I iI 'IV l l i'



144 M. Tabor et al.

The stationary distributions are defined in the same way as in equation (2.3), i.e.

PO(r)- T 1(rslmn)P8(m)P 0(n). (2.10)
m, n

Our aim is to see which functions of the form (2.4) still have a definite rate of
decay. For this purpose it is convenient to reduce equation (2.8) by summing
over one less index. This then gives a non-linear equation of the form

P(r, t+ At)P(s, t+ At)- 1: IT(rsjmn)P(m, t)P(n, t). (2.11)
I", n

Notice that we write a product of distributions on both sides of the equation;
this is to maintain its stochastic (or Markov) form and is consistent with its
stationary form which must be

PO(r)pO(s)= E 17(r, sjmn)P0(m)pO(n). (2.12)

We consider the convex function of the form

[P(m, t)P(n, t)] (2.13)

and average it over the quantities f-(rsjmn)P0(m)Pe(n)/Pe(r)P0 (s) which, as
can be seen from equation (2.12), can be regarded as a set of normalized proba-
bilities, i.e. 2: n-In) (,n)P(n)

,, p(rsrmn) p .( ) 1. (2.14)

Using the property of convex functions given in equation (2.6) we have

T.. l(rsmn) P(m)PO(n) P(m, t)P(n, t)1

E 7(sm)P(m, t)P(n, t)]
P )..P(m(r)P)(P _)

which, by (2.8) becomes

y n(rslmn)Po(,,m)P0 (n) [P(m' t)P(n, t)1

-. . L (m)P"(n J

SP(r, t + At)P(s, t + At) (>Pe~r)P~s)P O , (2.s6

summing over r and s and using the conservation condition (2.9) we obtain

Z Po(,.)Po(,,) ,r-P(m, t)P(n, t) 1-,. ft P-,,,)P J

. P"(r)P(s) P(r, t + At)P(s', t + At)
.F,"" PO(r)PO(s) I (2.17)

This is our basic result for a general convex function (of the form (2.4)) withj distributions governed by a non-linear equation. This result can easily be

I_
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generalized to processes of any order (molecularity). Thus for the stochastic
equation of order s

I

e(x, t +At)ff n (n,, x2, ... , n, I'n1M2,1 ...,IMS)x X P*mot0,  (2.18)

in,. .. , N.

we obtain the inequality

S.. .... f. ii1 Q1,e(,,,)j

F P(mi, t+ At)1 (19

As it stands, our result is not very useful since it only relates products of distribu-
tions at earlier and later times. We do not obtain the simple result (2.5) that
we have for linear processes. However, in the case of the entropy (Ox) - x In x)
we can go further. Considering for simplicity the bimolecular process, equation
(2.17) becomes

Y P(m, t)P(n, t) In P(m, t)P(n, t)1
-- X I O(n)PO(,,)j

E P(r, t + At)P(s, t + At) In [P(r, t + At )P(s, t + At) (2.20)

r, S L PO(r)PO(s) I
and the unique additivity properties of the logarithmic function can now be
exploited. Noting the normalization condition P(m, t) = 1, equation (2.18)
reduces immediately to

1: P(m, t) In - - > , r, t+At)In P (m) (2.21)

and hence we obtain the rate of entropy production
dAS

- d-'i" O.(2.22)
dt

Thus we see that the entropy deficiency has a definite rate of decay independent
of the molecularity of the process; a result which stems from the unique
additivity properties of the entropy. Furthermore, at equilibrium AS cor-
responds to the appropriate thermodynamic potential which, in the case of a
closed system coupled to a heat bath, is the Helmholtz free energy. We add
that if one merely wished to obtain the rate of entropy production (2.22) without
considering convex functions in general, an alternative derivation is possible
starting from the master equation corresponding to (2.8). This is shown in
the Appendix.

3. VIBRATIONAL RELAXATION

We now investigate the relaxation of HF molecules in the presence of a
buffer gas (heat bath) at 300 K. The rotational and translational (R-T)
processes are assumed to be sufficiently rapid for these degrees of freedom to be

II x2
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considered in equilibriurm with the heat bath. The remaining processes fall
into two main categories. These are the V-V processes by which vibrational
quanta are transferred between molecules, i.e.

HF(n) + HF(m) --.HF(n + Av) + HF(m- Av) (3.1)

and V-T processes in which vibrational quanta are lost to (or gained from) the
heat bath, i.e.

HF(n) + HF(m) -*HF(n + Av) + HF(m - Av') (3.2)

where Av OU ,'. We assume that although the buffer gas (e.g. Ar) is an efficient
agent for R-T processes it is inefficient for vibrational relaxation and we there-
fore neglect V-T processes of the form HF(n) + Ar -*HF(m) + Ar. The vibra-
tional energy levels of HF are anharmonic and taken to be Morse oscillator
levels, i.e.

E. - (n + J)6 - (n + J)2 06x,, (3.3)

where for the frequency and anharmonicity we take the i'alues a -4138-7 cm-'
and x,=0-0218 respectively (II]. Because of the anharmonicity the V-V
processes are 'off resonance ' and a small amount of energy, the energy defect,
is lost (or gained) to (or from) the heat bath. Thus, unlike V-V processes
between harmonic oscillators, the mean vibrational energy is no longer a con-
served quantity ; only the mean number of quanta is conserved (6, 7]. Further-
more, due to the anharmonicity, the V-V processes that excite quanta, e.g.

2HF(n) -HF(n- 1) + HF(n + 1),

are exothermic (this may be easily verified using equation (3.3)) and hence
thermodynamically preferred. Thus for V-V processes the trend is towards
population inversion in contrast to the V-T processes which favour de-excitation.
It is the competition between these two opposing trends that leads to many of
the characteristic features of the relaxation process.

3.1. Master equation and rate constants

We study the relaxation process by means of the non-linear master equation

dP(r, t)
dt - 1 (k(r, s --m, n)P(m, t)P(n. t)-k(m, n+--r, s)P(,, t)P(s, t)}. (3.4)

The rate constants k(r,s.--m,n) for which r+s=m+n correspond to V-V
processes whereas we define V-T processes as all those for which r +s m + n.
We also mention that in this master equation the rate constants have been
multiplied by the total molecular density N since the populations P(r, t) are
defined as N(r, t)IN where N(r, t) is the (time dependent) density of molecules
in state r.

In order to solve equation (3.4) we need all the state-to-state rate constants.
.* We use the exponential gap form [12]

k(r, s+-m, n)=Ak°(r, so--m, n) exp (- AIEm+E- E, - EsIlkT) (3.5)

where k(r, s+-m, n) is the prior rate constant (computed on the basis that all
quantum states are equally accessible) which increases with increasing energy
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defect A.E . E, + E, - E, - E, A is a normalization factor and A a measure of
the deviation of h from P0. The rate constants k have an obvious temperature
dependence but it should also be remembered that A and k are also temperature
dependent.

A detailed description of this type of rate constant, and a means of evaluating
(synthesizing) the parameters A and A is given elsewhere [12]. For our study
we normalize the rate constants such that k(0, 0-1, 0) has its experimental
value of 1.0 x 1012 cm3 mol - s- 1 at 300 K and set , equal to 0.5. Rate con-
stants computed in this way with similar values of A have been shown to compare
quite well with the available experimental results for the first few levels of HF
[13, 14]. In all calculations the total HF density was taken as N=5.35 x
10- 8 mol cm - 3 (1 torr, 300 K).

For low quantum numbers the V-V processes have much smaller energy
defects and hence larger rate constants than the corresponding V-T processes.
However, as the quantum numbers involved become larger the V-V energy
defect increases and the V-T energy defect decreases. Eventually a crossing
point, which will be temperature dependent, is reached after which it is the V-T
rate constants that become dominant. In figure 1 we plot series of V-V and
V-T rate constants which clearly illustrate this point.

I
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vibrational quantum number n

Figure 1. Series of V-V and V-T rate constants at 300 K. The rate constants are com-
puted according to the exponential gap formula (3.5).

In order to keep our computations down to realistic proportions we include
only the first I I vibrational levels (n =0 to 10). We retain all pairs of transitions
n + m #r + s such that either the forward, k(n, m --.r, s) or the reverse, k(r, s-*
n, m) rate constants are greater than or equal to k(1, 0 -*0, 0) = 1012 cm 3 mol - s-1
This still leaves us with over 300 (pairs of) rate constants including a number

417l



148 M. Tabor et al.

corresponding to multiple (An - ±2, ± 3, ± 4) quantum transitions, of the types
(3.1) and (3.2). The role of the multiple V-V rate constants is discussed in
§ 3.2. Obviously, with a non-linear master equation, the number of rate con-
stants increases enormously with the number of levels included.

The master equation was solved by direct numerical integration using a
modified version of the 6th order Gear Hybrid, predictor-corrector, method.

3.2. Population evolution

We choose the initial distributions (which might have been formed, for
example, by a pulse of radiation) to have a specified mean number of vibrational
quanta, i.e.

<00 nP(n, 0). (3.6)
'

In figures 2, 3, 4 we show the relaxation of three different distributions all with

<n>o- 2. We immediately see that in a very short time (about 0.3 Js) relative
to the total relaxation time all initial distributions relax to virtually the same
intermediate distribution (figures 2 (d), 3 (d), 4 (d)) which then develops more
slowly and, quite obviously, independently of the initial distribution. The fact
that the initial distributions in figures 3 and 4 are rather unphysical only serves
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Figures 2, 3 and 4. Time eolution of the populations for different initial distributions
having the same initial mean quantum numbers <n)9=2. Times are (for all
figures): a=000, b=0"02, c=0"10, d=0.31, e=1'01, f=2"02%s. The broken
line in figure 2 (d) corresponds to a computation including only single quantum
jump V-V rate constants.
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to emphasize this point. The intermediate distribution, although not displaying
strong population inversion shows a distinct smearing out of the distribution.
The time scale for the first relaxation stage can be interpreted as follows:
the lifetime of a vibrational level due to the V-V processes can be estimated as
r.- I/kN where k is the sum of all rate constants involving the given vibrational
quantum numbers. On the average in our calculation each level participates in
about 20 V-V processes while kvv- 1013 cm3 mol- s-1 and N_.5 x 10- 8 mol
cm- 3, hence r- 10- 7 s.

In figure 2 (d) we have also marked the distribution that was obtained when
including only single quantum jump (An= ± 1) V-V rate constants in the
master equation. To date, most computations have only included these rate
constants (15, 16, 17] and we therefore investigated the effect of the multiple
jump ones. Our general conclusion was that if only single jump rate constants
are included, although all the basic features are still demonstrated, the degree of
population inversion tended to be greater. We always included all multiple
jump V-V rate constants of significant value in our calculations.

a (nh.I t*-0.50 b (n).-2 trO031 c 4n,.3 t*=021
P(nt)

05

0123456789 5 5

wbrational quant-m nufter n

Figure 5. Intermediate quasi-equilibrium distributions observed for population evolution
starting with different <n\o, t* is the estimated time of attainment (in !Ls).

We also performed computations for initial distributions with mean quantum
number <n>, = 3 and <n>0 = 1. Again the same general phenomena observed
for en>0 = 2 were also apparent. We found, however, that the lower the initial
number of quanta the longer it took to attain a first common intermediate
distribution. In figure 5 we show the intermediate distributions obtained for
(n>0 = 1, 2 and 3 with the approximate times of attainment. The reason why a
distribution with a larger <n>, should relax more quickly may simply be due to
the fact that at higher quantum numbers more and more processes with larger
rate constants (see figure 1) come into play.

Quite clearly, then, the relaxation process can be divided into two stages;
a very fast V-V dominated stage giving rise to a quasi-equilibrium intermediate
distribution and then a very much slower, V-T dominated relaxation process.
The only important feature of the initial distribution seems to be the (mean)
number of quanta, the precise form being apparently unimportant. The markedly
different roles of the V-V and V-T processes and their different time scales
can be illustrated quite strikingly by solving the master equation with either
only V-V rate constants or only V-T rate constants included. This is shown
in figure 6 which can be compared directly with figure 2 where all rate constants
have been included. An additional feature of interest is that, in the case of V-V
rate constants only, a population inversion or up-pumping process [6, 18] is
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Figure 6. Time evolution of the populations with initial distribution as in figure 2 (a).
Full line : V-V rate constants only. Broken line: V-T rate constants only.

starting to develop (figures 6 (e) and 6 (f)) that would in fact ultimately lead to
dissociation (see § 4.2). However, it is precisely here that the V-T processes
come into play and make this exceedingly inefficient.

In view of the very fast nature of the V-V stage there is the possibility of
considerable differences in the observed initial vibrational distribution for a
given experiment carried out under different conditions, e.g. measurement of
the initial CO distribution in the highly exothermic chemical laser reactior!
O + CS -*CO + S [19].

3.3. Superposition
In a number of relaxation processes where the energy defect is small com-

pared with kT it has been found that the evolving population distribution can be
represented as a linear superposition of initial and final distributions. For
example, in cases of rotational relaxation [20] (which is a linear process) the
rotational distribution was found to be well fitted by the form

P(J, t) -PO(l) + [P(J, 0) - P(J)] exp (t),(3.7)

where P(J, 0) is the initial (or nascent) distribution and Po(J) the final equi-
librium distribution. A similar type of superposition was also found to give a
good fit to the observed results of the vibrational relaxation of CO [7]. How-
ever, for this non-linear process the superposition was of the form

P(n, t)--=P(n, t*) + [Pn, 0)- P(n, t*)] exp (-tr), (3.8)

where P(n, t*) is not the final equilibrium distribution but the distribution
obtained when the V-V (but not the V-T) processes had reached equilibrium,
i.e. a quasi-equilibrium intermediate distribution of the type discussed in the
previous section.

Accordingly, we tried to fit our numerical results for the first, V-V dominated,
stage of the relaxation of HF with a superposition of the form (3.8). We chose
P(n, 0) to be of the form shown in figure 2 (a) (<n 0 = 2) and hence took t =
0.31 Iss (see figure 2 (d)). In practice, the computation was performed by
taking a fixed value of r (which gives a measure of the relaxation time of the
V-V process) and just fitted the final distribution P(n, t*). We found that the
fitting was not very sensitive to the value of -r and for a wide range of values

. ( -1 = 10.0 to 20.0 ls - ) we obtained good results. In figure 7 we compare the
exact, master equation results with the superposition (3.8) for r-1= 14.0 js-1 .
For the larger times the agreement is remarkably good.

Superpositions of the type described imply that the system retains a memory
of the initial distribution during the relaxation process. Our results have shown
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Figure 7. Comparison of exact population evolution (full line) with superposition model,
equation (3.8) (broken line) for the first stage of the relaxation process (time in a).
Initial distribution as in figure 2 (a). In figure 7 (c) the two results are graphically
indistinguishable (times in ps).

that beyond t* the system apparently relaxes quite independently of P(n, 0)
and hence we cannot expect the superposition to hold beyond this time. This
is not too surprising since now the relaxation is dominated by a different
mechanism, namely the (large energy defect) V-T processes.

3.4. Evolution of the moments

So far we have only discussed the behaviour of microscopic quantities (the
populations) and we now turn to the behaviour of macroscopic quantities,
namely the moments. We consider the vibrational energy moments

<E = (t) - Y E i P(n, t) (3.9)
n

and the moments of vibrational quanta
< h(t)) > f n4P(n, t). (3.10)

nI

The first three of both are plotted (logarithmic ordinate for compaction) in
figure 8. A number of interesting features are apparent. In the first stage of
the process the second and third moments of both the energy and quantum
number show a rapid increase. At much longer times they all decay in roughly
the same manner. This is also true of the first moments but their early behaviour
is very different. The energy actually shows almost pure exponential decay
whereas the mean quantum number displays a different behaviour. If the first
stage was a pure V-V process then Kn(t)> should be constant; this actually
appears to be approximately the case for the first few collisions.

In the last section we saw that the first stage of the relaxation could be fitted
by a simple superposition (3.8). Hence all moments (<M(t)>) can easily be

)Y
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Figure 8. (a) Time evolution of the first three energy moments; <E(t)>, i= 1, 2, 3.
At early times the first moment (E(t)) has almost pure exponential decay (time in Js).

(b) Time evolution of the first three moments of vibrational quanta; <n4(t)>,
i= 1, 2, 3.

shown to relax in the following pure exponential manner

IM(t)> = <M(t*)> + [<M(O)> - <M(t*)>] exp (- t/7), (3.11)

where (,M(0)> and <M(t*)> are the initial and quasi-equilibrium values of the
moments respectively. If M(t*) is greater than M(0), as was found to be the
case for the second and third moments, then <M(t)> will increase from t=0 to
t=t* ; otherwise it will decay. Although these general features are approxi-
mately displayed in figure 8 it is clear that the superposition cannot be the whole
story. This is especially born out by the behaviour of the first moments. The
almost pure exponential decay of KE(t)> would strongly support the super-
position model but the different behaviour of <n(t)> could equally well contradict
it!

The behaviour of the moments, or more generally the macroscopic observ-
ables, is of central importance in obtaining the maximal entropy distributions.
This is described in the following section.

4. ENTROPY

We now turn to the use of entropy as a means of characterizing certain

features of the relaxation process described in the previous sections.

4.1. Entropy deficiency and vibrational entropy

In figure 9 we plot the entropy deficiency (2.7) as a function of time for the
relaxation processes corresponding to figure 2. As expected, AS shows a

\ 4
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Figure 9. Time dependence of the entropy deficiency (left ordinate) and of the vibrational
entropy (right ordinate) for population evolution with initial distribution as in
figure 2 (a). The maxisI4ni in S corresponds to the smearing out of the population
around figure 2 (d) (time .n pa).

smooth monotonic decrease with the approach to equilibrium. Plots :uch as
this are common to the relaxation of all the initial distributions examined.

In contrast to the entropy deficiency, the entropy of the vibrational distribu-
tion S= - .P(n, t) In P(n, t) (as opposed to the entropy of the whole system,

heat bath plus sub-system) does not necessarily have to display monotonic
behaviour. In figure 9 we plot S as a function of time for the population
evolution corresponding to figure 2. The sharp initial rise in S reflects the
increase in entropy as the well ordered initial distribution (figure 2-(c.)) relaxes
to the smeared out intermediate distribution (figure 2 (d)). However, beyond
this point the entropy then starts to decrease as the distribution narrows down
towards the final equilibrium distribution. If one notes that the equilibrium
distribution takes the form

PO(n) = Q-1 exp (-Ek T), (4.1)

where Q is the partition function and T the (bath) temperature, then the entropy
can be expressed in the following form:

S =- P(n, t) In P(n, t), 'II
7_ P(n, t) In 1 [P(n, t)_ -PO(n)] InP(n)•n P Lr'n) X

PO(n)InPO(n),

-AS+ I [VE(t)> - E(co)> + SO, (4.2)

where S. is the entropy of the equilibrium distribution, AS the entropy deficiency
and the term 1/kT[<E(t)> - (E(cc))] represents the amount of entropy trans-
ferred to the heat bath. This equation enables us to represent AS in the form

AS = AE - (S- SO). (4.3)

tT
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The second law of thermodynamics requires that AS> 0 and hence we must
always have AE > kT(S - S,). If we now consider just the first stage of the
relaxation process and let So represent the entropy of the quasi-equilibrium
distribution we can deduce the following. In certain cases of strong population
inversion we may have S> S, (as opposed to our case where S < SO) and hence
more entropy must be transferred to the heat bath to ensure AS> 0. We can
now see that this is facilitated by having a lower temperature T. Hence we can
draw the general conclusion that the lower the bath temperature the greater the
possible population inversion.

4.2. The maximal entropy distribution

Finally we examine the maximal entropy procedure as a means of reproducing
the evolving population distribution. It has been shown that this procedure
is of a variational type and that the maximal entropy distribution will converge
monotonically to the exact one as more and more (independent) constraints are
included (2, 3]. Clearly the procedure will be most useful when one can obtain
accurate results using the least number of constraints. Hence our aim is to
find those constraints that contain the most information pertinent to the relaxa-
tion process.

The results of § 3.4 show that the behaviour of the moments KE,(t)> and
Kn(t)> reflect quite a few features of the relaxation process and particularly the
early V-V stage. Accordingly, as a first attempt to find a suitable maximal
entropy distribution we maximize the entropy S - P(n, t) In P(n, t) subject

to the constraints <E,(t)> and <n(t)>. This standard procedure yields

P(n, t) = Q-1 exp [- AX(t)E, - A(t)n], (4.4)

where A and A. are time dependent Lagrange multipliers and Q the (time
dependent) partition function. The precise behaviour of Al(t) and A,(t) will
depend on the behaviour of the corresponding moments but we do know the
asymptotic behaviour, i.e.

A(t)=ilkT and A2t)=O (t-coo), (4.5)

where T is the bath temperature. The distribution (4.4) resembles that sug-
gested by Treanor et al. (6] to describe the quasi-stationary state that would be
obtained for a pure V-V relaxation process. However, in our case we are
interested in obtaining the form of the distribution function that is valid through-
out the entire relaxation process and not just the quasi-stationary distribution.

Returning to the distribution (4.4) we can rewrite it in the form

P(n, t) = Q- 1 exp [- A(t)(E,, - E,0 ) - A,(t)E, 0], (4.6)

where E 0 is the harmonic oscillator energy level,

E,°=(n+J)hw, and A(t)=[A(t)+ A2(t)/Acu].

Since E. < E 0 we see that for sufficiently large A, (depending, of course, on
the behaviour of A3) P(n, t) can display strong (in fact diverging) populationii1

I.

I
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inversion. Note that in the limit of zero anharmonicity (4.4) reduces to the
canonically invariant form [1]

P(n, t) = Q-1 exp [- A(t)E5
°]

the multiplier A2(t) has vanished since (n> is no longer an informative moment,
now being (trivially) linearly dependent on ,E,,O>. Although the two-para-
meter distribution (4.4) may be adequate at short times it will break down at
large ones since it fails to take into account the de-excitation of higher vibrational
levels by the V-T processes. Clearly additional constraints are required. One
might consider trying <n

2(t)> but this is not informative since it is linearly de-
pendent on <E,> and <n> (see equation (3.3)). We can, however, use <E.(t)>
and in figures 10 and 11 we compare the exact distribution at a number of times
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Figures 10 and 11. Comparison of exact (full line) distributions with two (figure 10)
and three (figure 11) constraints maximal entropy distributions (broken line) at a
number of times (jls). The third constraint is almost linearly dependent on the
previous ones (cf. [211 for the definition of linear dependence and its implications).

with the maximal entropy distributions using <E,,(t)> and In>, and <En(t)),
<n(t)> and (E,,1(t)> as constraints. It can be seen that the three-parameter
distribution gives a good fit to the exact one for all times shown. As expected,
the two-parameter distribution, although adequate at very short times, is par-
ticularly poor at longer times. Clearly though, other combinations of con-
straints are possible. We also compared (not shown) the exact distributions
with those using KE,(t)> and <E, 2(t)> and <Ej(t)), <E(t)> and <E,,(t)> as
constraints. The latter distribution gives excellent results and one must con-
clude that this combination of constraints contains more information than the
other three-parameter distribution tried. This is perhaps not surprising since
the combination CE,,>, 'E,,2> and <E,,3 > implicitly contains information about
all vibrational moments up to \n6> whereas <E,,>, <n> and CE . 2> only includes
terms up to <n >. However, our results should be considered as phenomeno-
logical at this stage and we have simply shown that the evolving population
distribution can be accurately fitted with a three-parameter distribution. Our
choice of constraints has been guided by physical intuition but we cannot tell
at this stage whether there are other combinations of constraints that would be
more informative and hence give even better results. Finally, we mention that

I . .- -J- .

\,t,|
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the numerical determination of the Lagrange multipliers was carried out by
means of a recently devised linear programming technique [21].

4.3. Constraints

The previous discussion clearly identified the procedure that is still missing
in the maximal entropy formalism. One needs to be able to identify the con-
straints directly without computing the probabilities first. For the time
evolution under the Liouville equation this procedure has already been imple-
mented [22]. It is thus possible to obtain an exact solution of the Liouvile
equation via the maximal entropy formalism. Work is in progress on deriving
corresponding results for the master equation. Until such results are available,
the role of the maximal entropy formalism is either that of providing a compact
expressions for the populations or that of inducing the most likely (or most
conservative or least biased) population distribution subject to given average
values of a few constraints (which, by themselves, do not suffice to determine
uniquely the distribution). The procedure that is still missing specifies a set
of constraints whose average values, when used in the maximal entropy formalism,
determine an exact solution of the master equation.

5. CONCLUDING REMARKS

We have investigated the vibrational relaxation of diatomic molecules in a
heat bath by direct numerical integration of the master equation, using a compre-
hensive set of exponential gap state-to-state rate constants. The anharmonicity
of the energy levels gives rise to a number of interesting features ; principally,
that the relaxation process can be divided into two stages : first, a very fast up-
pumping stage dominated by V-V exchange collisions which leads to a type of
quasi-equilibrium intermediate distribution and secondly, a very much slower
V-T dominated stage during which the intermediate distribution relaxes towards
thermal equilibrium. This second stage appears to be quite independent of the
precise form of the initial distribution. The first stage can be fitted quite well
by a linear superposition of the initial and quasi-equilibrium distributions.
The evolution of the moments of energy and vibrational quanta reflect the
various stages of the relaxation process. We then proceeded to show how
entropy can be used to characterize the relaxation process. The entropy
deficiency displays a smooth monotonic decay with the approach to equilibrium.
On the other hand, the entropy of the relaxing subsystem need not display
monotonic decay and, indeed, varies according to the relative ordering of the
evolving population distribution. The maximal entropy distribution was used
to describe the evolving population distribution. Although a two-constraint
distribution provided an adequate fit to the V-V dominated stages of the relaxa-
tion it was found necessary to add at least a third constraint to account for later,
V-T dominated, stages of the process.

Although further numerical work would be of interest ; e.g. to consider the
effect of changes of temperature and other parameters, more theoretical work is

-called for. At the kinetic level it is of great practical importance to devise
models that will explain the trar.sition from V-V dominated to V-T dominated
collisions and hence predict the degree of possible population inversion. At
the thermodynamic level it is important to devise criteria for selecting the most
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informative constraints in order to obtain the most accurate maximal entropy
distributions.

We may also point out that the procedures outlined here for computing vibra-
tional state populations evolving in time subject to V-V and V-T relaxation
may be of great utility in numerical modelling of chemical lasers (23]. In these
models, a great deal of computational effort is expended in calculating state-to-
state rate constants and in solving non-linear master equations of the type of
equation (3.4). We suggest that incorporation of explicit expressions for
dP(n)/dt would greatly reduce the time required for these modelling calculations.

We would like to thank Ms. S. Feliks and Ms. V. Buch for computational
assistance and Mr. N. Agmon and Mr. Y. Alhassid for the use of their maximal
entropy programme. M.T. thanks the Royal Society for a Research Fellowship.
This work reflects research supported by U.S. Air Force Grants AFOSR
77-3135 (R.D.L.) AFOSR-EOARD 77-062 (A.B-S.) and AFOSR 75-2758
(J.I.S.).

APPENDIX

It is a simple matter to show [1] the equivalence between the stochastic
equation

P(r, t+At)= 5" H(rslmn)P(m, t)P(n, t) (A 1)
5, 1ft. X

and the non-linear master equation

dP(r, t)
T dt = Y {k(r, s*-m, n)P(m, t)P(n, t)-k(m, n'-r, s)P(r, t)P(s, t)}. (A 2)

$, S. Wn

The state-to-state rate constants k(r, s --m, n) satisfy the condition of detailed
balance with the equilibrium distributions, i.e.

k(r, s -m, n)PO(m)PO(n)-k(m, n -r, s)PO(r)PO(s). (A 3)

Using this condition the master equation (A 2) can be rewritten in the following
form

dP(rt k(r, s--m, n FP(m, t)P(n, t) P(r, t)P(s, t) A
.. SmM. L PO(m)PO( ) P(r)P*(s) .(

We wish to find the rate of entropy production -dAS/dt, i.e.
dAS d P(r, t) dP(r, t) nP(r, t)

- -- E ± P(r, t) In I In I , (A 5)
d- d-t L P0(r) J dt L --r)J

which we write in the ' symmetrized ' form

dAS , drPt) r)P(s, t) In Ps, InA7 - d, , n L d"- dt L (s)
mdP(mtl n dP(n, t) t) (A6)

•In III (A 6) . . ,

dt$1) t POn)
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By using the master (A 4) we can reduce (A 6) to

dAS Y,0t)P(n, t) P(r, t)P(s, t)
d at f ,... yS ,  

_m. P _(m) __((_)

x I InL ('t)P(nt) I t)P(s, t) (A 7)

and since (x -y)(ln x - In Y) >, 0 we have the desired result

dAS
j - '- > 0. (A 8)

An interesting difference between this derivation and the more general one
described in § 2 is that here it is necessary to invoke the detailed balance condi-
tion (A 3).
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The significance of the detailed balance principle and equilibrium solutions of the master equation is discussed from a
thermodynamic point of view for isolated and isothermal systems. Starting from a master equation for all the time depen-
dent derees of freedom it is shown that the uniqueness of the equilibrium distribution as a stationary solution is ensured if
the detailed rate constants are balanced with the aid of the distribution which maximizes the entropy subject to the thermo-
dynamic constraints. This procedure should precede physical assumptions which simplify the original master equation.
e.g. the assumption that rapidly relaxing modes can be described by canonical distribution functions.

I. Introduction

In most types of molecular relaxation phenomena it is possible to distinguish between rapidly and slowly relax-
ing degrees of freedom. For example, translational and rotational relaxation of molecules in the gas phase can usual-
ly be regarded as instantaneous on the time scale of vibrational relaxation. Whenever such separation to different
time scales is justified the approach to equilibrium of the slowly relaxing modes is governed by a master equation
with temperature dependent rate constants. The temperature characterizes the distribution over the rapidly relaxing
modes. If the system is coupled to a heat bath this temperature is constant. In the more general case it is time de-
pendent and reflects the instantaneous average energy content of these modes. A definite, temperature dependent,
relationship of the same formal appearance, known commonly as the detailed balance principle, connects the for-
ward and reverse rate constants for both isothermal and nonisothermal systems.

The detailed balance principle is a consequence of the requirement that at thermodynamic equilibrium the rates
of forward and reverse detailed processes are equal [I I. Since the equilibrium condition is uniquely determined by
the macroscopic thermodynamic constraints so also is the detailed balance relationship. Based on this fact we shall
argue below that the interpretation of the relation between the rate constants mentioned above as detailed balanc-
ing is valid for isothermal systems but can be (and has been) misleading for nonisothermal systems. This distinction
is not just semantic. Related, but more serious, misconceptions may arise with respect to the stationary, equilibrium,
solutions of the master equation; in particular when besides the ordinary canonical constraints the equilibrium dis-
tribution is determined by additional constraints.

In the following we show that a proper (macroscopic) description of a molecular relaxation process should start

with the following procedure: (a) A master equation is written for all the time dependent degrees of freedom.
(b) The equilibrium distribution is determined by maximizing the system entropy subject to the appropriate ther-

- modynamic constraints. (c) The equilibrium distribution is used to determine the detailed balance relation, thereby
.1~
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ensuring the uniqueness of the equilibrium distribution as a stationary solution. Additional assumptions (like in.
stantaneous relaxation of certain modes), can be made after the three basic requirements have been fulfilled.

As an example to serve us throughout the discussion we take a gas of N diatomic molecules in volume V. For
the sake of concreteness it can be assumed that the initial nonequilibrium condition of the system is the result of
vibrational excitation (e.g. following infrared laser irradiation). Neglecting radiative, wall and other secondary ef-
fects the molecules will relax to a new equilibrium state via bimolecular collisions. If the system is thermally iso-
lated (or "adiabatic") the new final temperature will differ from the original temperature before the excitation.
The temperatures are equal if the system is coupled to a heat bath ("isothermal"). We shall treat in detail the adia-
batic system and briefly the fsothermal one. (The nature of the heat bath will not be specified; usually it is realized
by a buffer gas in excess.) The Treanor distribution [21 which characterizes an intermediate ("quasi-equilibrium"),
stage in the relaxation of anharmonic oscillators will also be discussed.

2. Equilibrium and detailed balance

The general form of the master equation describing a relaxation process caused by binary collisions between
molecules of the same kind is

dP(a)ldt - -p r [k(a, b -" a', b')P(a) P(b) - k(a', b' -" a, b) P(a') P(b')] (1)

b,a',b'

where a represents all the degrees of freedom that may change during the relaxation. The summation symbol
stands also for integration when a involves continuous variables. p = N/V is the gas density, P(a) is the probability
of finding a molecule in state a and the k's are the rate constants.

The equilibrium solution of (1), Po(a), is the (unique) distribution function P(ct) which maximizes the entropy
[3]
S = - Nk P(a) n[P(a)/g(a)], (2)

a

subject to the thermodynamic constraints on the system. k is the Boltzmann constant. g(a), the degeneracy of a,
involves density of state factors for continuous degrees of freedom. To ensure that Po(a) is the equilibrium solu-
tion, dPo(a)/dt 0 0, the rate constants must satisfy the detailed balance relation

Po(a) Po(b) k(a, b - a', b') = Po(a') Po(b') k(a', b' - a, b). (3)

We turn now to the special case of diatomic molecules. To simplify the discussion the state of a molecule will
be specified by a = e, n, (b = e, m), where e = e t + er is the sum of translational and rotational energies and n is the
vibrational level. The master equation is

dP(e, n)/dt -p fde de' de'[k(e, n, e, m - e', n, e', m')P(e, n)P(e, m)
mn ,m'

(4)
- k(e', n', e', m''- e, n, e, m) P(e', n')P(e', m')],

where P(e, n) de is the probability of finding a molecule in vibrational state n and translational-rotational (t/r) en-
ergy between e and e + de,

SfP(e,n)dem P(n) -fP(e)de-. (5)

It should be noticed that since in each bimolecular collision the total collision energy is conserved the detailed
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rate constants are nonzero only when e + e + en + em = e' + e' , + em,. (The rate constants contain a "built in"
SO + e + e, + em - e' - e' - en , - er,) factor [I

The entropy (per molecule) is given by

S = -k f deP(e, n) [P(e, n) In [P(e, n)/p(e)], (6)
'I

where p(e) is the density of t/r states [3).
In an isolated system the average energy per molecule is kept constant throughout the relaxation process. That

is

<i + ed) f W d (e, n)(e + en) =.A, (7)

where the constant A is the initial (as well as final) value of the average energy per molecule E/N. (In the example
of nonequilibrium created by laser excitation, E is the energy of the gas after the excitation.)

The equilibrium distribution Po(e, n) is the one which maximizes the entropy, (6), subject to the normalization
and energy constraints, (5) and (7) respectively. The maximization procedure is standard and yields

Po(e, n) = p(e) exp[-00(e + en)] /Q( 0) = Po(e)P0 (n), (8)

P0 (e) = p(e) exp(-O 0 e)/qt(l 0 ), Po(n) = exp(-3oen)/qv(qO), (9)

where Wf0 ) = qt(60 )qv(0 0) is the partition function per molecule corresponding to the final equilibrium tempera-
ture To a (k#0)-1. To, the common temperature of all the degrees of freedom at t -. ca is uniquely determined
through

(e + en)eq = -a In Q(0)Ia# 0 - A, (10)

where -a In QWo~)/aoM -a In Q(x)/ax at x a0 .
Using (3) (with a = e, n) and (8) and recalling that the rate constants vanish unless e + e, + e + em = e' + en . +e'

+ er,, we find

p(e)p(e)k(e, e., e, em -b e', en,, e', em') = p(e')p(e')k(e', e,, e', em' -I e, en , e, em). (11)

This is the basic detailed balance relation for the bimolecular relaxation process. Exactly the same expression can
be derived from microscopic considerations based on the symmetry properties of the state-to-state transition prob-
abilities. In this case (11) is known as the principle of microscopic reversibility.

3. The reduced master equation

The full master equation, (4), and detailed balance relation, (11), can be simplified by assuming that t/r relaxa-
tion is instantaneous compared to vibrational relaxation. That is, P(n) = fP(e, n) de relaxes more slowly than P(e)

XP(e, n). This means that at every stage of the relaxation

P(e, n) - P(n)Pe(e) = P(n)p(e) exp(-Oe)/qt(f). (12)

It should be noted that the instantaneous t/r temperature T - (ki)-I which characterizes the canonical distribution
Pc(e) is time dependent, i.e. *0 except at t -- ao when P = go, see below. Substitution of (12) into (4) and integra-
tion yield

dP(n)Idrt = - , , [k(n, m -. n', m'-;3)P(n)P(m) - k(n', m' - n, m; )P(n')P(m')J . (13)
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The, time dependent, averaged rate constants in this equation are given by

k(n, m - n', m';) f de de de' de' P(e)P(e)k(e, n, e, m - e', n', e', i). (14)

The time dependence of this rate constant is due to the time dependence of/1 in P(e), (12). Multiplying each p(e)
factor in (11) by exp(-0e)/qtt() to get P(e), integrating over e, e, e', e' and recalling that k(e, n, e, m - e', n', e', m')
iszero fore+e n +e+em +e' +e.1 +e' +e m , we find

exp[-0(en + em)] k(n, m -* n', in'; 1) = exp[-P(eno + em,)] k(n', m' -* n, m; 1). (15)

A relation of exactly this form accounts for the detailed balance principle in isothermal systems where 0
const = I IkT b and Tb is the heat bath temperature. However, while in the isothermal case (15) is a direct result

of the fundamental relation (3) (see below), its derivation for isolated systems was based on the extra assumption
(12). We emphasize this difference because a general detailed balance relation is unique, time independent and
should directly reflect the equilibrium distribution. Thus, while in the isothermal case comparison of (3) and (I5)
correctly implies that the equilibrium distribution is

Pc(n) = exp(-Pe)/qv(), (16)

the identification of(16) as the equilibrium distribution in the isolated system is erroneous. Furthermore, this mis-
leading conclusion may appear to be supported by the fact that direct substitution of (16) into the reduced master
equation (13) (as suggested for example in ref. (2]), yields for any 0, dPc(n)/d t = 0, as if (16) was an equilibrium
solution. This contradicts the assertion that (8), in which 00 * a(t s), is the only equilibrium solution. On the
other hand, taking the time derivative of (16) we find

Pc(n) = -(e, - (en))4P,(n), (17)

where (e) = -a In q,/a1. Hence Pc(n) is a stationary solution only when j = 0 (i.e. at t -- -s when 0 = 00).
The resolution of this "paradox" is indeed quite simple. We shall now show that (16) should be excluded not

only as a stationary solution but also as a transient distribution. This is because the reduced master equation, (13),
does not fully characterize the relaxation process and must be solved simultaneously with the equation for 1
= -T/kT 2 . The rate equation for 13 is obtained from the energy conservation constraint, (7), and the master equa-
tion, (13). UsingiA = () + (i n ) = 0 and (12) we find

= 1(18)

where (in) can be evaluated from (13) after multiplying by en and summing over n. Ctl is the t/r heat capacity per
molecule, C"- (5/2k). If at some moment the vibrational distribution was of the form (16) we would get ()

C- b. From (18) it is obvious that this value and hence (16) are absurd (except of course at t -* as when o0,
T lk1o). Thus, although by direct substitution into the reduced master equation the canonical-like distribution
(16) may appear as an equilibrium solution this possibility is overruled since it violates (7) and (18). (Obviously
dP(n)/dt = 0 alone aoes not imply that P(n) is stationary. If this was sufficient then P(n) a 0 is also stationary.)

An alternative proof of the above assertions, emphasizing that the t/r distribution and the vibrational distribu-
tion cannot be simultaneously canonical with the same temperature, except at t -* as, follows from (10). To simpli-
fy the arguments we can use, with no loss of generality, the classical expressions Q = qtqv. Using (8), (9) and (10)
we find A = (e)e + (e )  = 7/200 = j kT0 . If as assumed in (16) the t/r modes are Boltzmann throughout the relax-
ation then (e n ) = A - 5/21= jkT0 - .jkT. Suppose now that P(n) is also canonical with vibrational temperature
T,1 - /kOv so that (e n) = kTv - kT0 - kT. Thus, as long as the relaxation process has not been terminated T,
:* T* T0 whereas at equilibrium Tv = T - T0 .
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4. Isothermal relaxation

If the system is coupled to a heat bath at temperature Tb = (kfb)-I and t/r relaxation is instantaneous P(e) is
given by the canonical form (16) with 0 = Ob = constant. Thus, only P(n) is time dependent and the basic master
equation is (1) with a - n. In this case (e) = -a In qtfJ3b)I/30 = const but (en) is time dependent, hence (e + e,) is
not conserved during the relaxation. The conserved quantity is the total energy of the system + heat bath. It can
be shown (see e.g. ref. [41 ) that in this case the thermodynamic constraint defining the equilibrium state is (en)eq
= -a In qvO()/30,. Maximization of (2), with a = n, subject to this constraint and the normalization condition
Z-P(n) = 1, yields, as expected, the canonical distribution Po(n) = exp(-oen)/qv(3b), cf. (16). Finally, using this
result in (3) we find a detailed balance relation identical to (15) but with 0 #o = constant. Of course, in the iso-thermal case (18) is identically zero and the reduced equation (13), with j = o, fully describes the relaxation pro-

cess.

5. The Treanor distribution

The well known Treanor distribution [21 can be regarded as the equilibrium distribution of a hypothetical sys-
tem in which only v-v collisions cause the relaxation. (This "quasistationary" distribution provides an approximate
description of the vibrational populations at the end of the fast relaxation stage governed by v-v collisions. It is ap-
propriate only for low lying levels for which Tvv 4 -r) In an isolated system relaxing in this fashion the normaliza-
tion, (5), and the energy conservation, (7), constraints should be supplemented by the quanta conservation con-
straint [2,3]

(n) f deP(e, n)n = nP(n) B, (19)
n n

where B is the average number of vibrational quanta per molecule at t 0, i.e. after the excitation. The equilibrium,
Treanor, distribution obtains by maximizing (6) subject to (5), (7) and (19). This yields

P0(e, n) = p(e) exp[-3'(e + en) - ,'n] IQff, y') = Po(e)Po(n), (20)

Po(e) = p(e) exp(-O'e)/qtV3), (21)

P°(n) = exp(-P'e - i'n)1qv(0', -t), (22)

where the new partition functions Q(V, 7) qt(3')qv(6', y') ensure the normalization of probabilities. TheI Lagrange parameters 0' and -f' are determined via

A - -a In Qj', 7)/aa' -a In qtq(8la' - a In qvV, ')/a7', (23)

B = -a In -3', I1 7' -a n qv(J3', -/'al,'. (24)
It should be noted that since/(' satisfy the two independent equations, (23) and (24), while 30 satisfy the single

equation (10), 0' * 0 0. The constant A has the same value in (10) and (23). If, accidentally A' = 10 then (24) is a
"non-informative", i.e. redundant constraint. This for example is the case when the levels are harmonic, e, = nhw.

There is an additional important difference between the equilibrium solutions (20) and (8). While the latter is
the stationary solution of the full master equation (4), the former corresponds to a modification of (4) in which
the sum on the right hand side involves only v-v ((n) conserving) collisions, i.e. n + m = n' + m'. Setting again a
= e, n in (3), using (20) and noting that exp[-v'(n + m - n' + m')] = 0, we find that the detailed rate constants in

the modified master equation satisfy ( 1); (as expected, since (11) is essentially the microscopic reversibility prin-
ciple).
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Assuming again that t/r relaxation is instantaneous we can emr!oy (11) to integrate the modified master equa-
tion over e, e, e' and e' and get, cf. (13),

dP(n)/dt = - 6(n + m - n'- m')[k(n, m - n', m'; O)P(n)P(m) - k(n', m'-* n, m; O)P(n)P(m')] ,(25)

where the 5 function ensures (n) conservation. Note that 03 = (t) :*3' except at t -+ o-. From (11) and (12) it fol-
lows that the time dependent rate constants satisfy (15). (Setting dP(n)/dt = 0 in (25) we obtain the lowest order
term in the Chapman-Enskog expansion of (13) in terms of Trvt/,, [2].)

Finally, by direct substitution of the canonical-like distribution

Pc(n) = exp(-#e - 7n)/qv(3, 7), (26)

it may appear that (26) is a stationary solution of (25) for each momentary value of $ and regardless of the value
of -. To show that (26) is not an acceptable solution we may treat t as time dependent. (This includes j 0 as a
special case.) As in the passage from (16) to (17), derivation of (26) yields

c(n) =-[(e, - (e,))4 + (n - W))j] Pc(n). (27)

From this equation it is clear that Ac(n ) = 0 only when both ? =0 and 0 0. (The n dependence of the term in
square brackets excludes the possibility that the terms with 3 and "' cancel out.) The resolution of the present
"paradox" follows closely the lines of section 3. The major argument for rejecting (26) for finite r is that a station-
ary solution should satisfy, in addition to dP(n)/dt = 0, the rate equation for , (18). Alternatively, the only solu-
tion of the form (26) which satisfy both (23) and (24) is (20) for which 1 = 0' and 7 = -'.

In isothermal systems where 0 = 1O = const, the equilibrium (Treanor) distribution is given by (20) with 0' re-
placed by Ob and 7' as evaluated from (24) with 1b instead of 0'.

6. Concluding remarks

It was shown that thermodynamic considerations ensure the uniqueness of the detailed balance relation and the
maximal entropy distribution as the only stationary solution of the master equation, It was emphasized that canon-
ical-like distributions which by direct substitution into a reduced master equation may appear as stationary solu-
tion are quite often misleading because they are not consistent with the thermodynamic constraints. Particularly
so, where only the reduced master equation for the slowly relaxing modes is considered.

Acknowledgement

We would like to thank Professor R.D. Levine for very helpful discussions.

References

I I l J.C. Light, J. Ross and K.E. Shuler, in: Kinetic processes in gases and plasmas, ed. A.R. Hochstim (Academic Press, New York,
1965).

121 C.E. Treanor, J.W. Rich and R.G. Rehm, J. Chem. Phys. 48 (1968) 1798.
131 R.D. Levine and A. Ben-Shaul, in: Chemical and biochemical applications of lasers, ed. C.B. Moore (Academic Press, New York,

1977).

[41 F. Reif, Statistical and thermal physics (McGraw-Hill, New York, 1965).

576

I I I I |lk, = - -I -



THE ROLE OF REAGENT INTERNAL EXCITATION IN COLLISION EXPERIMENTS

A. Ben-Shaul and R.D. Levine

Department of Physical Chemistry
The Hebrew University, Jerusalem, Israel

Abstract

Variations in the rates of endoergic reactions due to different

reagent excitations at the same total energy are of a limited (positive

or negative) range and reflect a dynamical bias. Not so for bulk

experiments where all nonselected degrees of freedom have a thermal
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1. Introduction

The role of reagent internal state in chemical reactios can be probed

under two distinct types of conditions: (a) Single-collision experiments where

not only the internal state but also the relative translational energy can be

controlled [1-51 and (b) Bulk, macroscopic systems where typically all non-

selected degrees of freedom have a thermal distribution [6-8]. The purpose of

this letter is to contrast the results expected from these two types of experi-

ments with special reference to endoergic reactions where experiments of type (b)

will almost invariably lead to more dramatic enhancements of the reaction rate.

It may indeed even be the case that at a given total energy, increasing the

internal energy will decrease the reaction rate while the same change will

significantly enhance the rate in an otherwise thermal experiment.

The different effects of reagent excitation in bulk and single collision

experiments reflect two different aspects of the role of energy in chemical

reactions. Changing the internal energy at a given total energy alters the

dynamics of the collision. Such a change takes the collision through an entirely

different region in phase space or, in a more classical language, corresponds to

an entirely different set of reactive trajectories. On the other hand, the major

effect of changing reagent internal excitation in an otherwise thermal experiment

is, in the endothermic regime, to increase the fraction of molecules with energy

in excess of the barrier [9-11]. There are, to be sure, dynamical effects also

in bulk selection experiments, but the larger role is played by the purely

thermochemical effect: In the

AB(n) + C - AB + C (I)

reaction regard AB molecules of different internal levels as distinct chemica:

species, [11]. The endoergicity of the reaction from the ground state is AE0.

1,J
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The endoergicity for the reaction of AB(n) is AE0-En. Increasing En is thus

equivalent to a corresponding decrease in the endoergicity of the reaction.

Experimental results are more readily available on energy disposal in

exoergic reactions, e.g. corresponding to (I)

A + BC - AB(n) + C. (II)

Using detailed balance one can compare the dynamic bias of the forward and

reveyse reactions and show them to be the same, [10-13].

2. Detailed balance for single-collision experiments.

Consider the state-to-state diatom-atom endoergic reaction

AB(n) + C - A + BC(n') (III)

at the totdl energy E. Here n and n' are labels of either single quantum states

or of a group of degenerate states of AB and BC (e.g. the gj = 2J+1 quantum

states of a given v,J vibrotational level). Microscopic reversibility implies that

[12-14]

gnPT(E-En)k(n - n';E) = gn,P+(E-AE0 -En, )k(n' - n;E) (1)

Here gn is the degeneracy and PT(ET) is the density of translational states,

PT(ET) = A E1/2 [9-13] at the translational energy ET. The total energy E is

measured in (1) from the ground state of AB+C. The energy of the ground state of

A+BC then equals AE0, the endoergicity.

Summing both sides of (1) over n' leads to the detailed balance relation

for reaction (I)

gnP T(E-En)k (n-;E) = P' (E)k(-,,n;E) (2)

Here k(-n;E)

k(-on;E) Z P 0(nIE)k(n. n;E) (3)
nt

P0 (n'IE) =nPT(E-AEO-En,)/p (E) C4)

"I ! 'gn'OT (E- E 0-E n')(5
p' (E) = . Pn5)

An
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is the rate constant for the exoergic reaction (IT) at the total energy E.

The definition, (3), of k(-n;E) in terms of the state-to-state rates

k(n'- n;E) is that implied by the canon, ('average over initial states'). P0 (nIE)

as defined by (4) and (S) is the prior distribution. k(n - ;E),

k(n-;E) = E k(n - n';E) (6)n'

is the rate constant for the endoergic reaction (1), where the internal energy

of AB is En and the relative translational energy of AB(n) and C is E = E-En

The definition (6) follows the canon, ('sum over final states'), and is valid

whatever the energy distribution in the products A+BC of (II) may happen to

be (except that their total energy is E).

The final form of (2) requires one more stage: Summing (2) over both n

and n'

p(E)k(E) = p'(E)k'(E). (7)

Here the two rate constants refer to the forward and reverse

A + BC - AB + C (IV)

reaction at the total energy E;

k =(E) =k(-+n;E) (8)
n

k(E) = .P°(nIE)k(n-;E) (9)
n

Po(nIE) = gnPT E-En)/p(E) (10)

p(E) = n(gnPT11E-En), n)

Using (2), (7), (10) and (11) we obtain the rate constant from AB(n) at a

total energy E, (12,15]

k(n-';E) = p'(E)k -n;E)/g nPT (E-En) = k(E)[P(nIE)/Po(nIE)]nT n (12)
= k(E)exp[-I(njE)]

Here P(njE) is the products, state distribution

P(nI ) = k( ;(E)/k'CE) (13)

in the exoergic A+BC reaction (II) at the total energy E. P0(nE) as defined

in (10) is the 'prior' distribution [13,16] of the products' states in the

same reaction, and I(nE) is the surprisal.

I
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The physical interpretation of (12) is immediate. Any dependence of k(n-;E),

the rate constant of the AB(n).C reaction, on the internal state of AB implies a

dynamical bias in the energy disposal of the reversed A+BC reaction and vice-

versa (11-13]. Hence, on prior grounds, i.e. in the absence of any dynamical

bias, (I(nlE)=0), all AB+C collisions with the ,same total energy have the same

rate, irrespective of the partitioning of the energy between internal and trans-

lational degrees of freedom, [9].

We would like to emphasize that the result (12) is completely consistent

with the conservation of angular momentum. Even such reactions where large

changes in the reduced mass take place (e.g. Sr+HF - SrF+H, [1], or K+!El -b KCl+H,

[2]) must still satisfy (12) with PO defined as in (10).

3. Lower resolution collision experiments.

Much of our knowledge about the role of internal energy in endoergic

reactions derives, via detailed balance, from measurements of products' state

distributions in the reversed, exoergic, processes. In many such experiments the

resolution of products' internal states is limited to manifolds of states, a.

The most obvious cases* being vibrational levels, a=v, and translational energy

At a given E specifying v corresponds to many translational-rotational states

with joint energy ET+EJ = E-Ev . Similarly, there are usually many v,J states

within the energy interval E-(ET+,IET) .< E v,J < E-ET '

shells, (ET,ET+"ET), [12,16]. At a given total energy E, the detailed balance

relation for the forward (endoergic) and reverse (exoergic) processes,

AB(a) + C Z A + BC (V)

is obtained by summing both sides of (2) over the states n within the group a,

p(Ca;E)k(a - ;E) p'(E)k( -a c;E). (14)

I.,
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Here
p(a;E) = gT(E-En) (15)

k(a - ;E) = Z'P0 (nla)k(n - ;E) (16)
n

P°(nja) = gnPT(E-En)/p(a;E) (17)

k( - a;E) = i'k( - n;E) (18)

where the prime over the summation signifies the restriction to states n in the

group a. Using (14) and (7) we obtain, in analogy to (12)

k(a - ;E) = k(E)[P(aIE)/P°(aJE)] z kCE)exp[-I(aIE)] (19)

where P(aIE) and P0 (alE),

P(alE) = k( -+ a;E)/k' (E) (20)

PO(CaJE) = p(a;E)/p(E) (21)

are the products' 'a' distribution in the reverse reaction and the prior

distribution, respectively. The relative rate k(a + ;E)/k(E), like

k(n - ;E)/k(E) cf. (12), depends on any reagent state preparation only if

there is a dynamical bias, i.e. if the surprisal I(acE) # 0.

4. Example

The efficacy of different partitions of a given total energy between the

different degrees of freedom of the reagents is determined by the surprisal.

Enhancement occurs for such initial states whose surprisal is negative while a

rate below the average corresponds to initial states of positive surprisal*. For

By the canon, k(E) is the average rate constant,hence, unless all states react

with the same rate, there must be states which react with a smaller than average

rate. In other words, if some partitioning of the total energy enhances the rate

then, necessarily, some other partitioning decreases the rate.

endoergic reactions the magnitude of the surprisal can be determined from

experimental (or computational) studies of energy disposal in the reversed,
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exoergic, reactions. The available results of such studies are that the surprisal

is seldom larger than a couple of units. Hence the typical dynamical bias provided

by nature suffices for at most about two orders of magnitude of variation in the

relative rates (at a given total energy).

To emphasize the limited, albeit respectable range of reaction rates possible

for different partitions of a given energy we consider the endoergic

H + HF(a) - H2 + F (AE0 
= 32 kcal/mole) (VI)

reaction. The surprisal for the reversed reaction is well characterized [17-21],

for thermal reactants. Due to the considerable axoergicity, the spread in the total

energy in the products of the F+H2 - H+HF reaction is small. Hence, to a good

approximation the surprisal for H+HF is known at a given total energy

AE E0 + (5/2)RT + E a where Ea, the activation energy is about 1 kcal/mole, [22]).

Three choices of a will be considered:

i) a = v. The vibrational surprisal for Ev .< AE0 is quite linear

I(vIE) - -tn[P(vIE)/P°(vE)] = X0 + X vfv (22)

where fv= Ev/E and Xv is a slowly decreasing function of E [20]. From (19) and (22)

k(v . ;E)/k(v-l - ;E) = exr..(-XvAfv) (23)

where Af = f-f 0.3 for the H+HF(v) reaction at E just above AE0 .* Iv v v-l
-6.9, [17-20]. The enhancement of the rate by increasing HF internalA v

excitation by a vibrational quantum (,. 11 kcal/mole) is less than an order of

magnitude. By comparison, at 300 K, increasing the HF excitation by a vibrational

quantum changes the rate by a factor of "Il09 [10].

Similar conclusions obtain for the role of reagent vibration in other endo-

- ergic reactions. The recent report [1] that in the endoergic (AE0 M 6 kcal/mole)

Sr.HF - SrF+H reaction at E * 13 kcal/mole, excitation of HF from v=0 to v-1

changed the rate by a factor of 1-10 is therefore consistent with our generalI expectations. The low enhancement factor is not necessarily indicative of the

absence of a dynamical bias. Strict absence of bias requires that the ratio be

%44
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unchanged and only a strong bias would provide a factor of ten.

ii) a = v,J. The vibrotational surprisal for F+H2 is well represented by

l(v,JIE) = Xvfv + 0R f R/-f v + X0' (24)

Here fR = ER/E is the fraction of the total energy in rotation. For F+H2

R 1.75 corresponding to gR = 0.21 whereg is the most probable value of

gR -- fR/ 10-fv)' [21]. The relative rates

k(v,J - ;E)/k(E) = exp[-X f - E) -XO] (25)

are shown as a contour plot in Fig. 1. The peak is in the vicinity of the

fv l 1 apex and the contours decrease by a factor of 2. We are aware that the

qualitative shape of our contours differs from what others could have expected.

Fig. I also shows the more familiar disposal plot of P(v,JIE).

iii) a = J at constant v. The effect of pure rotational excitation is

reflected by the ratio

k(v,J - ;E)/k(v,J-l - ;E) = exp[-ORAfR/(l-f )] (26)

Since typically 0R ? 0, rotational excitation will usually decrease the

reaction rate. The decline of the rate with increasing rotational state of HF

is quite evident in Fig. 1. A qualitatively similar decline has recently been

reported for the K+HCI(v=l,J) - KCI+H collision experiments, [2].

Exceptions to the unfavourable role of reagent rotation in collision

experiments are possible for such rare cases that eR < 0. Examples are

provided by reactions of OH(v,J), e.g. (23,24]

OH(v=0 or l,J) + NO -o H + NO2 , (VII)

OH(v=0 or 1,K) + H "* H2 + O(1 D) . (VIII)

Contour plots showing the effects of changing reagent internal (or, equi-

valently, translational)excitation at a given E are available for the

M + CH 31 - MI + CH3  (IX)

reaction (M an alkali metal) [12], and similarly for [25]

K + RbF(CsF) - KF + Rb(Cs) (X)

L1
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"S. Thermal experiment

The detailed balance relation analogous to C12) for the case where nonselected

degrees of freedom have a thermal distribution is [10,11]

kC* - ;T) = k(T)P@CIT)/p(oaT) (27)

P(~aIT) is the distribution of AB(a) molecules in the thermal A+BC reaction. p(a!T)

is the Boltzmann fraction of ABCa) molecules at the temperature T. For a very endo-

ergic reaction, the reversed reaction is very exoergic and hence P(UIT) ' P(atE)

at E AE 0E a +(5/2)RT. The essential differences between single collision experi-

ments (19) and bulk experiments (27) is thus in the statistical factors P (alE) vs.

p(alT). For exoergic reactions and when E. $ AE0, P°(alE) is only a moderately

varying function of a vs. the strong dependence of p(alT) on Ea at lower temperatures.

As the bulk temperature is increased, the differences between the two types of

experiments will diminish.

In the Tolman interpretation [26], the activation energy is the difference

between the mean energy of those molecules that react and the mean energy of

all molecules. From (27)

Ea (a) B -RT2 Unk(a - ;T)/aT = Ea-Ea-RT2DnP(ajT)/BT. (28)

Here Ea is the activation energy of the purely thermal reaction.

- RTi 2np(ajT)/aT is the change in energy of all molecules due to selective

population of AB(a) while E*(a),
a

(C)= -RT2 tnP (aIT)/aT (29)

is the change in the mean energy of those molecules that react. The empirical

finding [9] that E*(a), is smaller than E or roughly for a = v,

Ea(v) x X (RT/E)Ev (30)

where -A v(RT/E) is typically below 0.25 implies that the primary (>75%) cause for

the enhancement of the bulk rate is the increase in the mean energy of all molecules,

while the reduction in the mean energy of those molecules that react is a secondwry

(<25%) effect.
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Figure legend

1 a. Contour plot of k(v,J - ;E)/k(E) for the H+HF(v,J) reaction at E 34 kcal/mole.

Shown are contours connecting different partitionings of the total energy E

which have the same reaction rate according to (25). X = -6.9, eR = 1.75.V

The highest contour is in the uppermost, fv - 1 apex and successive contours

correspond to a decline of the rate by a factor of 2. The dashed contour is

the one of zero surprisal. Partitions of the total energy which arein the

region above it enhance the rate, while those which are below correspond

to a rate below average.

b. Contour plot of the products' P(v,JIE) distribution in the F+H2 reaction.

Note that the two plots are related by the detailed balance equation (19).
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Preface

Lasers and. chemical change is the study of radiation and molecules

in disequilibrium. The distinguishing feature of such systems is the

extreme departure from thermal equilibrium: the radiation is usually

confined to a narrow frequency range, is well collimated and is far

brighter than a black body radiation; the chemical composition and

also the distribution of molecules over their different energy states

is often markedly displaced from that expected at equilibrium. Such

systems can be used as a source of laser radiation and, reversedly,

lasers can rapidly and selectively displace molecular systes from

equilibrium. The subsequent evolution of the initially prepared state

can then be monitored - again using lasers.

One purpose of this book is to introduce the concepts required

to discuss systems of radiation and molecules in disequilibrium. These

include the physics of (laser) radiation and of radiation-matter inter-

action and molecular structure and spectroscopy. Excellent textbooks

of these topics are available and our survey (in Chap. 3) is only in-

tended to accent the essential points, with special reference to atomic

and molecular radiation physics. Considerably more attention is given

to the topic of disequilibrium in chemical systems (Chap. 2). In parti-

cular we consider both inter- and intra-molecular dynamics with special

reference to energy requirements and energy disposal in chemical re-

actions and to what goes on in between - intramolecular energy migration.

Disequilibrium in macroscopic systems and their temporal evolution is

then discussed in terms of the underlying molecular events. The discussion

I
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throughout is in terms of a thermodynamic-like formulation motivated by

information theoretic considerations and is illustrated by examples drawn

from current studies. The principles of the design of such experiments, the

experimental setups as used in practice and the nature and interpretation of

typical results are discussed in detail in Chapters 4 and S.

Lasers and chemical change is primarily the study of the phenomena of

interconversion of radiant and chemical energy. Exoergic chemical reactions

can be employed to generate laser radiation and lasers can be used to

induce and to interrogate chemical reactions. The first chapter is an

Jo / introductionko these two broad classes of phenomena (which are then

treated in more detail in Chapters 4 and S). It also serves to motivate

the need for the ,theoretical concepts introduced in Chapters 2 and 3. The

first chapter is self-contained, but many details are glossed over. The

basic phenomena and the essential interpretation can however be found there.

Large sections-of chapters 4 and S are devoted to case studies.

Attention is given to the experimental arrangements with special reference

to the more commonly used techniques. Chapters 4 and 5 describe the practice

of chemical lasers and laser induced chemistry, including the blending of

experimental studies and theoretical interpretation.

The material in Chap. 1 is suitable for inclusion in advanced under-

graduate physical chemistry courses. The other chapters are for the graduate

level. It is however our intention and hope that they will also prove useful

to the specialist. The selection of topics and their relative emphasis

reflects not only our judgment but also our expertise and research interests,

the overall progress in the field and the availability of other sources.

In particular, laser induced processes in condensed phases (solutions,

matrices, mixed crystals) and in biological systems are not covered. We have

not tried to be-exhaustive and the list of references is by no means complete



and is only meant to offer an access to the literature. We have tried to

offer an integrated picture, to emphasize chemical reactions and chemical
lasers, to draw attention to the complexities and the promises associated

with the use of larger molecules and to stress the theme of disequilibrium

on both the microscopic and macroscopic levels.

The rapid progress in this field has been made possible by the elegant

and probing experiments and the incisive interpretation carried out by many
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